关于数学的知识范文1
一、注重学习方法
在学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题,但解综合题的能力较差,更不愿解难题;女生上课记笔记,复习时喜欢看课本和笔记,但忽视上课听讲和能力训练;女生注重条理化和规范化,按部就班,但适应性和创新意识较差.因此,教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力.
二、培养学习兴趣
女生数学能力的下降,环境因素及心理因素不容忽视.目前社会、家庭、学校对学生的期望值普遍过高.而女生性格较为文静、内向,心理承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降.因此,教师要多关心女生的思想和学习,经常同她们平等交谈,了解其思想上、学习上存在的问题,帮助其分析原因,制定学习计划,清除紧张心理,鼓励她们“敢问”、“会问”,激发其学习兴趣.同时,要求家长能以积极态度对待女生的数学学习,要多鼓励少指责,帮助她们弃掉沉重的思想包袱,轻松愉快地投入到数学学习中;还可以结合女性成才的事例和现实生活中的实例,帮助她们树立学好数学的信心.事实上,女生的情感平稳度比较高,只要她们感兴趣,就会克服困难,努力达到提高数学能力的目的.
三、强化预习能力
女生受生理、心理等因素影响,对知识的理解、应用能力相对要差一些,对问题的反应速度也慢一些.因此,要提高课堂学习过程中的数学能力,课前的预习至关重要.教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点.认真预习,还可以改变心理状态,变被动学习为主动参与.因此,要求女生强化课前预习,“笨鸟先飞”.
四、巩固基本,提高综合
女生数学能力差,主要表现在对基本技能的理解、掌握和应用上.只有在巩固基础知识和掌握基本技能的前提下,才能提高女生的综合能力.因此,教师要加强对旧知识的复习和基本技能的训练,结合讲授新课组织复习;也可以通过基础知识的训练,使学生对已学的知识进行巩固和提高,使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用.
五、增加自信
在数学学习过程中,女生在运算能力方面,规范性强,准确率高,但运算速度偏慢、技巧性不强;在逻辑思维能力方面,善于直接推理、条理性强,但间接推理欠缺、思维方式单一;在空间想象能力方面,直觉思维敏捷、表达准确,但线面关系含混、作图能力差;在应用能力方面,“解模”能力较强,但“建模”能力偏差.因此,教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的勇气和战胜困难的决心.特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要“由因导果”,也要“执果索因”,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养想象力;揭示实际问题的空间形式和数量关系,培养“建模”能力.
关于数学的知识范文2
关键词:知识关系;离散数学;教学;设计
离散数学是以有限或可数个元素作为研究对象,并且是以研究离散量的结构和相互之间的关系为主要目标[1]。计算机科学领域中的离散量理论问题,需要用离散数学所涉及的概念、方法和理论做出描述和深化[2]。同时,离散数学中的理论体系结构有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,有益于学生严谨、完整、规范的科学态度的培养[2-3]。因此,研究离散数学在计算机科学和技术专业课程中的地位,分析离散数学与计算机专业其他学科间的关系,构建适合当前计算机专业的离散数学教学内容,对计算机科学与技术的发展,起着极为重要的作用。
1离散数学在计算机科学与技术专业课程中的地位
教育部高等学校计算机科学与技术教学指导委员会在2007年公布了计算机科学与技术(计算机科学方向)专业规范,共指定了15门核心课程,包括计算机导论、程序设计基础、离散数学(结构)、算法与数据结构、计算机组成基础、计算机体系结构、操作系统、数据库系统原理、编译原理、软件工程、计算机图形学、计算机网络、人工智能、数字逻辑、社会与职业道德[4]。其中离散数学的教学内容不仅涉及计算机硬件,而且和计算机软件的研究有着更密切的关系,具有鲜明的基础特点,不仅是学习算法与数据结构、操作系统、数据库原理、软件工程等11门课程之前的必修内容,同时以计算机导论和程序设计基础作为离散数学的先导课程。离散数学在计算机科学与技术专业各课程的地位及其与其他课程的关系,如图1所示。
2计算机科学与技术专业后续课程用到的离散数学知识
离散数学所包括的多个数学分支,如数理逻辑、集合论、图论、自动机理论等,都与计算机科学与技术专业的后续课程有紧密的关系。
算法与数据结构中将操作对象间的关系分为4类:集合、线性结构、树形结构、图状结构或网状结构。其中逻辑结构和基本运算操作来源于离散数学中的离散结构和算法思考。离散数学中的集合论、关系、图论和树等内容就反映了数据结构中四大结构的知识[2]。
数据库系统原理中的关系数据库的逻辑结构是一个由行和列组成的二维关系。在研究实体集中的域和域之间的关系、表结构的确定与设计、关系操作的数据查询和维护功能的实现、关系分解的无损连接性分析、连接依赖等问题时都用到离散数学的关系理论[5]。
编译程序一般由8个模块组成,包括词法分析程序、语法分析程序、语义分析程序、中间代码生成程序、代码优化程序、目标代码生成程序、错误检查和处理程序、各种信息表格的管理程序[6] 。离散数学里的形式语言与自动机所包含的文法、有限状态机和图灵机等知识点为编译原理的词法分析及语法分析等内容奠定了基础。
离散数学中数学推理和布尔代数章节中的知识就为早期的人工智能研究领域打下了良好的数学基础[7-8]。谓词逻辑演算为人工智能学科提供了一种重要的知识表示方法和推理方法。
布尔代数已成功地用于计算机的硬件分析与设计[9-10]。
哈夫曼(Huffman)压缩是一种无损压缩法。这种方法在计算机体系结构的指令系统设计和改进内容占有相当重要的地位[11]。
鉴于篇幅所限,不再一一论述,下面列表给出计算机科学与技术专业的后续课程中所用到的主要知识点,如表1所示。
3离散数学的知识结构设计
基于离散数学在计算机专业具有基础性的地位。从离散数学后续课程所需的离散结构基础理论出发,根据前后课程的知识关系来构建离散数学的知识结构和体系,使所设计的离散数学教学内容适合当前计算机科学与技术专业教学需要,能够支撑后续课程的教学且和后续课程不相互覆盖。本文设计的离散数学知识体系结构如表2所示。
表2所设计的知识体系结构共分为5个单元,分别是集合、关系与函数,基本逻辑,布尔代数,图与树,形式语言与自动机。其中,集合、关系与函数单元包括集合、鸽笼原理、基数性和可数性、关系、函数等内容,是算法与数据结构、数据库系统原理等课程的理论基础;基本逻辑单元包括命题逻辑、谓词逻辑、假言推理、否定式推理等内容,是计算机组成基础、计算机体系结构、软件工程、人工智能、数字逻辑等课程的理论基础;布尔代数单元包括格、布尔代数等内容,是计算机组成基础、计算机体系结构和人工智能等课程的理论基础;图与树单元包括无向图、有向图、树、生成树等内容,是算法与数据结构、操作系统、软件工程、计算机图形学、计算机网络等课程的理论基础;形式语言与自动机单元包括文法、有限状态机和图灵机等内容,是编译原理等课程的理论基础。
该设计体现了“实用、管用、够用”、“易教易学”的原则,具有以下特点:
1)5个单元由浅入深、层层递进,并具有相对的独立性,便于学生学习和教师授课。
2) 具有针对性,能够支撑教育部高等学校计算机科学与技术教学指导委员会于2007年指定的11门后续课程。
3) 符合计算机科学的发展趋势和高等院校计算机教学改革的需要。
4) 紧扣离散数学和其他计算机专业课程的知识联系,实用性强。
4离散数学的实验设计
由于离散数学课程理论性强、高度抽象,学生难于理解掌握。为此,在离散数学的教学过程中引入一些实验,既对离散数学的基本理论的很好验证,也巩固了先导课程的学习内容,同时为后续课程的学习打下了基础。不但能够激发学生的学习积极性和主动性,也培养了学生的创新意识和创新能力。实验选题既要反映理论的实质内容与思路(理论背景),又要与实际应用结合,选题不宜过多,针对不同的知识点设计了如下实验内容:
实验1 集合运算;
实验2 等价关系的判定;
实验3 用warshall算法求闭包;
实验4 偏序集性质;
实验5 求解范式;
实验6 形式化证明;
实验7 哈密尔顿图与旅行商人问题;
实验8 树的遍历、求解生成树;
实验9 有限自动机的运行。
实验报告要求列出实验目的、实验内容、实验步骤、源程序和实验结果。
对源程序的设计要做到如下两个方面的描述,其一是描述该程序具有什么功能?其二是描述程序结构,包括函数调用格式、参数含义、返回值描述、函数功能;函数之间的调用关系图、程序总体执行流程图。
对实验结果要求记录:出错次数、出错严重程度、错误的性质、解决办法。还要进行简单的实验总结:如编程时间、设计时间、上机调试时间等;遇到了哪些难题,是怎么克服的,对程序的评价?
5结语
离散数学不仅是学习计算机科学、研究计算机科学的理论工具,也是提高学生逻辑思维能力、创造性思维能力以及形式化表述能力工具,在现代计算机科学中,对离散数学教学内容做科学合理的设计,使离散数学更好的为计算机科学服务,具有非常重要的意义。
注:河南科技学院精品课程建设项目。
参考文献:
[1] 王蕾,李永. 浅析离散数学在计算机科学中的应用[J]. 平顶山师专学报,2003,18(5):63-64.
[2] 陈敏,李泽军. 离散数学在计算机学科中的应用[J]. 电脑知识与技术,2009,5(1):251-252.
[3] 王玉红. 离散数学在计算机教学中的作用[J]. 赤峰学院学报:自然科学版,2008,24(1):90-91.
[4] 教育部高等学校计算机科学与技术教学指导委员会. 高等学校计算机科学与技术发展战略研究报告暨专业规范(试行)[M].北京:高等教育出版社,2006:35.
[5] Patrick O'Neil,Elizabeth O'Neil. 数据库原理、编程与性能[M]. 周傲英,俞荣华,译. 北京:机械工业出版社,2003:16-46,239-288.
[6] 蒋立源,康慕宁. 编译原理[M]. 2版. 西安:西北工业大学出版社,2001:3-15.
[7] 谢晋. 试谈离散数学在计算机学科中的重要性[J]. 黄石理工学院学报,2006,22(1):90-93.
[8] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2003:10-20.
[9] 白中英. 数字逻辑与数字系统[M]. 北京:科学出版社,2002:6-15.
关于数学的知识范文3
论文关键词:线性代数,线性关系,知识体系
线性代数这门课程有一个特点:各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。内容有行列式、矩阵、向量、线性方程组、特征值问题、二次型、线性空间与线性变换。我们几乎可以找到从线性方程组、行列式、向量、矩阵、多项式、线性空间、线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络[1]。实际上,课程内容的展开不仅取决于课程本身的逻辑,也应该充分考虑学生的接受能力的因素。行列式、矩阵运算和方程组求解通常都被认为容易被学生理解的内容,而向量组的线性关系问题是线性代数的难点。通常的线性代数知识体系是按照由易到难道顺序安排,这样似乎可以渐进地接受难点,但实际上有以下几个弊端:(1)由于难点出现的时间较迟,学生没有机会对难点进行重复运用和消化理解就已经进入课程的尾声;(2)从心理上讲,学生学习有先入为主的现象,最开始学到的知识最容易记住,因此难点后出现也不利于学生接受;(3)运用向量组的线性关系理论可以统领线性代数的重点内容,如果不尽早引入这个理论,就不容易将块状结构有机地结合起来。
1. 线性关系理论的基本概念及其表现
线性关系理论的基本概念包括:向量组的线性组合、向量的线性表示、向量组的线性相关性、向量组的线性无关性、向量组的最大无关组、向量组的秩等。
对任意一个向量组,以这个向量组为列向量组构造矩阵,可以通过对实施初等行变换判别列向量组的线性相关性,进而获得该向量组的最大无关组,同时可以获得向量组中任意一个向量由最大无关组线性表示的表示系数,也可以获得向量组的秩。可见,向量组的线性关系问题集中表现在矩阵的初等行变换过程中。可以认为数学论文,矩阵的初等行变换过程是向量组线性关系理论的外在表现。
2. 基于线性关系理论的线性代数知识体系与关联
线性代数中主要问题的解决都是通过解线性方程组实现的,可以说线性代数的核心内容是线性方程组,而研究线性方程组及其解靠的是矩阵及其矩阵的初等行变换。因此,以线性方程组为出发点,可以为以后解决问题奠定基础。
通过线性方程组可以引出矩阵概念,并引出矩阵的初等行变换方法,进一步引出向量概念,以及向量的线性运算和矩阵与向量乘法运算。在这些基本概念和运算的基础上,线性方程组可以表示矩阵形式和向量形式,其中,是线性方程组的系数矩阵,为矩阵的列向量组,是线性方程组的常数列向量[2]。
由向量形式方程组进一步讨论向量组的线性关系理论,为深入研究和理解线性代数的其它问题提供理论基础。从矩阵形式的方程组出发进一步讨论矩阵运算,特别是在向量组的最大无关组和向量组的秩的概念下,矩阵的秩的定义变得很简单,逆矩阵也很容易理解。行列式可以认为是方阵中的一个特殊概念,事实上,阶行列式也可以用个为向量定义[2]。在行列式和线性方程组概念下,很自然地讨论矩阵的特征值和特征向量问题。二次型标准形问题则在特征值和特征向量概念基础上处理。线性空间和线性变换则是向量方法和矩阵方法的升华[3]杂志网。
在这种知识体系下,向量和矩阵是线性代数的核心工具,矩阵的初等变换是代数的核心方法,而向量组的线性关系理论是核心理论。矩阵的初等变换这一方法不仅可用于求解线性方程组,他还可用于求矩阵的逆矩阵;求矩阵的秩;求向量组的极大无关组及其秩;求齐次线性方程组的基础解系;求向量空间的基及维数;求特征向量;求实二次型的标准形等。而对于这些问题的理性认识则需要向量组的线性关系理论。
3. 知识体系展开的基本逻辑
怎样设计线性代数课程的科学体系?这取决于我们对学科内容的本质的理解,对该学科在现代科学中的地位和作用的认识和课程的目标。在我国,理工科的线性代数教科书是把线性代数的各部分内容作为工具来掌握,而忽视了这门学科最终形成的思想基石――空间与变换,因此这样的课程并没有真正跨进线性代数的思想殿堂,顶多只能视为矩阵运算的初级教程。而我国数学专业的高等代数课程又过分沉湎于形式化概念的逻辑体系构建,而忽略了线性代数理论在现实生活中的鲜活背景和在现代科学技术中的应用前景,因此这样的课程在学完之后也不易明白学习该课程的目的和意义,甚至以为仅仅是学习其他课程的前期准备[1]。
很多文献([1][4][5])讨论了线性代数的知识体系,但是学者们基本上只考虑知识体系本身,而忽略了学生学习的心理因素。线性代数的一个公认特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备。面对抽象的课程内容和复杂度知识体系,学生在学习数学课程时往往会产生焦虑情绪[7]。按照块状结构安排线性代数的知识体系容易使学生产生焦虑情绪。
通常按照块状结构安排线性代数的知识体系,便于教师理解,但是,学生很难建立块状结构之间的联系。基于线性关系理论的线性代数知识体系是从学生认识能力出发数学论文,由现实世界的问题引出数学概念,使学生感到是因为解决现实的需要而学习新的数学概念、理论和方法。这种由现实问题到解决方法的逻辑关系称为生活逻辑,而按照块状结构形成的知识关系成为学科逻辑[7]。学科逻辑是出于本学科的研究者知识整理的需要,不适合向学生传授知识。基于线性关系理论的线性代数知识体系的基本逻辑关系是按生活逻辑展开的。首先,学生容易认识线性方程组与现实的联系,随着解决线性方程组问题过程的深化,提出矩阵和向量概念;进一步,矩阵和向量等新的元素需要进行运算,因此分别讨论向量运算(主要是线性关系理论和方法)和矩阵运算;具备了线性代数的核心工具(向量和矩阵)、核心方法(矩阵的初等变换)和核心理论(向量组的线性关系理论),就可以继续讨论特征值和特征向量,可以讨论二次型,也可以讨论线性空间和线性变换。整个线性代数知识是按照需求展开的,因此,很多过去块状结构中的知识内容(如矩阵、向量、线性方程组等)并非一次性的安排在一章之内,而是在不同的章节中逐渐深入展开。这样安排便于形成以矩阵初等变换为核心方法和向量组的线性关系理论为核心理论的主线,便于学生渐进理解线性代数的难点。
4. 结论
基于线性关系理论的线性代数知识体系将线性代数知识按生活逻辑展开,以向量和矩阵为核心工具,矩阵的初等变换为核心方法,以向量组的线性关系理论为核心理论,形成线性代数的知识主线。这种知识体系便于学生理解线性代数的难点,克服学习上的焦虑情绪。
参考文献
[1]刘学质.线性代数的体系与方法[J]. 重庆教育学院学报,2007.20(7):142-144.
[2]Peter D. Lax. 线性代数及其应用(第二版)[M]. 北京:人民邮电出版社, 2009.
[3]王玺等.线性代数[M]. 上海:同济大学出版社, 2009.
[4]彭德艳,金传榆.《线性代数》内容的关联性研究[J]. 大学数学,2007.23(1):170-175.
[5]贺继康.高等代数课程结构简论[J]. 陕西教育学院学报,2003.19(4):77-79.
[6]王玺.数学课堂教学中的学生情绪因素与教师行为分析[J]. 上海电力学院学报,2004.20(4):95-98.
[7]朱宁波,齐冰.学科课程内容组织的逻辑体系及其处理原则探析[J]. 辽宁师范大学学报(社会科学版)2007.30(1):61-63
关于数学的知识范文4
一、数学思想方法教学的心理学意义
1.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去,学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
2.有利于记忆。数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的,无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。”
3.学习基本原理有利于“原理和态度的迁移”。美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
二、初中数学教学内容的层次
初中数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。
表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识。学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识。
深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识。教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性。
那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛。因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。
三、初中数学中的主要数学思想和方法
数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。由于初中生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高。我们认为,在初中数学中应予以重视的数学思想主要有三个:分类讨论思想、化归思想和对应思想。其理由是:(1)这三个思想几乎包摄了全部初中 数学内容。(2)符合初中生的思维能力及他们的实际生活经验,易于被他们理解和掌握。(3)在初中 数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多。(4)掌握这些思想可以为进一步学习高中数学打下较好的基础。
此外,符号化思想、公理化思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透。数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识、经验以及数学思想掌握情况密切相关。从有利于初中数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法,数形结合法,变换法,函数法和分类法等。一般讲,初中数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的。
四、数学思想方法的教学模式
关于数学的知识范文5
美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义.
第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容.
第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.”
第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力.
第四,强调结构和原理的学习,“能够缩挟高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线.
2.中学数学教学内容的层次
中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法.
表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识.
深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.
那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质.
3.中学数学中的主要数学思想和方法
数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是:(1)这三个思想几乎包摄了全部中学数学内容;(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;(4)掌握这些思想可以为进一步学习高等数学打下较好的基础.
此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透.
数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.
4.数学思想方法的教学模式
数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式:
关于数学的知识范文6
关键词: 数学思想 教学方法 探讨
1.数学思想方法教学的心理学意义
(1)“懂得基本原理使得学科更容易理解”。心理学认为:“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义”,使新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
(2)有利于记忆。布鲁纳认为:“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生”。
(3)学习基本原理有利于“原理和态度的迁移”。布鲁纳认为:“这种类型的迁移应该是教育过程的核心――用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为:“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的。”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过实验证明:“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
2.中学数学教学内容的层次
中学数学教学内容从总体上可以分为两个层次,一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识。学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步学习和领悟相关的深层知识。深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识。教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性。那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水、无本之木,学生也难以领略到深层知识的真谛。因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。
3.中学数学中的主要数学思想和方法
数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高。我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想。其理由是:(1)这三个思想几乎包摄了全部的中学数学内容;(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;(4)掌握这些思想可以为进一步学习高等数学打下较好的基础。
此外,符号化思想、公理化思想及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透。数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识、经验及数学思想掌握情况密切相关。从有利于中学数学教学的角度出发,本着数量不宜过多的原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等。一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的。
4.数学思想方法的教学模式
数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性。基于上述认识,我们给出数学思想方法教学的一个教学模式:操作―掌握―领悟。对此模式说明如下:(1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的。(2)“操作”是指表层知识教学,即基本知识与技能的教学。“操作”是数学思想、方法教学的基础。(3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握。学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提。(4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所领悟、有所体会。(5)数学思想、方法教学是循环往复、螺旋上升的过程,往往是几种数学思想、方法交织在一起,在教学过程中依据具体情况在一段时间内突出渗透与明确一种数学思想或方法,效果可能更好些。
参考文献:
[1]布鲁纳.教育过程.上海人民出版社.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至tiexin666##126.com举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://tiexin66.com/syfw/513452.html