2024年四年级上册数学第一单元的知识点梳理

四年级上册数学第一单元的知识点梳理四年级上册数学第一单元的知识点梳理 知识点是知识 理论 道理 思想等的相对独立的最小单元 接下来就由小编带来四年级上册数学第一单元的知识点梳理 希望对你有所帮助 一 主要内容 第一单元包含主题图 亿以内数的读法例 1 例 2 亿以内数的写法例 3 例 6 数的产生 十进制计数法 亿以上数的认识的认识例 1 例 3 计算工具的认识 用计算器计算几个部分 二 各部分知识点以及相应练习题目 主题图



四年级上册数学第一单元的知识点梳理

知识点是知识、理论、道理、思想等的相对独立的最小单元,接下来就由小编带来四年级上册数学第一单元的知识点梳理,希望对你有所帮助。

四年级上册数学第一单元的知识点梳理

一、主要内容:

第一单元包含主题图、亿以内数的读法例1例2、亿以内数的写法例3——例6、数的产生、十进制计数法、亿以上数的认识的认识例1——例3、计算工具的认识、用计算器计算几个部分。

二、各部分知识点以及相应练习题目

主题图:出现6个省、直辖市、自治区的总人口数,让学生初步感知大数,了解中国人口状况,渗透国情教育。

亿以内数的读法:

例1:北京天坛图。呈现首都北京市人口数。让学生知道生活中有比万大的数。类推每相邻两个计数单位之间的关系,知道数级、数位。

习题:

1、从个位起,第()位是万位;第九位是()位;第()位是十万位;万位的右边一位是()位,左边一位是()位。

2、最小的五位数是(),最小的七位数是(),最大的七位数是(),最小的九位数是()。

3、每相邻两个计数单位之间的进率是()。

4、在数位顺序表中,万级包括()数位。

5、从九十五万数到一百万。

例2:读含两极的数。

习题:

1、是()位数,读作(),数字2在()位上,表示2个();数字8在()位上,表示8个();数字7在()位上,表示7个();

2、看计数器读数。

3、读出下面各数。

0000

亿以内数的写法:

例3:写含两级的数。学生对照数位表写出相应的数。

习题:

1、写出下面各数

三百六十万二千()

一亿()

一千零五十万零三十()

二十万零二()

2、写出由下面各数组成的数

四百万、七十万、五万、和三千。

3、用0、0、0、1、2、3、4这七个数字按要求组成七位数。

读两个零;读一个零;所有的零都不读;读三个零;

组成最大的六位数。

例4:亿以内数比较大小。

习题:

85204○0○○28901

例5:将整万的数改写成以“万”作单位的数

习题:

改写成以“万”作单位的数

=()=()

例6:将非整万的数用“四舍五入”的方法改写成以“万”作单位的近似数。

习题:

1、先写出横线上的数,再求近似数。(省略万位后面的尾数。)

北京大钟寺的一口古钟上有二十万零一百八十四个汉字。

2、把省略百位后面的尾数、千位后面的尾数、万位后面的尾数。

3、□7630≈10万;

4、有一个六位数,把它四舍五入到万位是30万,这个数最大是多少?最小是多少?

数的产生:介绍古时人们的计数法、计数符号(数字)、介绍阿拉伯数字,自然数。

习题:

1、古时人们计数的方法有()()()。

2、判断:阿拉伯数字是阿拉伯人发明的。()

3、一个物体也没有用()表示,最小的自然数是(),()最大的自然数,自然数的个数是()。

十进制计数法:介绍数位顺序表,由万级数位扩展到亿级数位;介绍十进制计数法。

亿以上数的认识的认识例1:读三级的数。题型同亿以内数读法

例2:写含三级的数。题型同亿以内数读法

例3:将整亿的数改写成以亿作单位数,将非整亿的数用“四舍五入”的方法写成以“亿”作单位的数。

习题:

1、把省略亿位后面的尾数。

2、□≈10亿;

3、有一个十位数,把它四舍五入到万位是26亿,这个数最大是多少?最小是多少?

计算工具的认识、用计算器计算:介绍算盘、电子计算器。运用计算器进行四则运算,探索计算规律。

习题:

1、算盘上方的一个珠子代表(),开关及清屏键是()。

2、计算385+201=需要按()次键

3、497+498+499+500+501+502+503=

4、×1=

×2=

×3=

×4=

×5=

×6=

大数的认识

1、10个一千是一万,10个一万是十万,10个十万是一百万,10个一百万是一千万。

2、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

3、一(个)、十、百、万、十万、百万、千万、亿、十亿……都是计数单位。

4、按照我国的计数习惯,从右边起,每四个数位是一级。

数位顺序表

数级……亿级万级个级

数位……千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位

计数单位……千亿百亿十亿亿千万百万十万万千百十个

5、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。

6、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的0都不读,其它数位有一个0或几个0,都只读一个“零”。

7、写数时,万级和亿级上的数都是按照个级上数的方法来写,哪一位不够用0来补足。改写“万”或“亿”作单位的数,只要将末尾的4个0或8个0去掉或加上“万”或“亿”字就行了。1.把多位数改写成“万”、“亿”。中间要用“=”连接

8、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。

方法是:看尾数位上的数,如果是4或比4小,就把尾数舍去,并在数的末尾添上一个计数单位“万”或者“亿”;如果是5或比5大,要在前一位加1,再把尾数舍去,添上计数单位“万”或者“亿”。得出的是近似数,中间要用“≈”连接。

9、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有用0表示,0也是自然数。最小的自然数是0,没有的自然数,自然数的个数是无限的。

10、我国在十四世纪发明的至今仍在使用的计算工具是算盘。算盘上方一个珠子代表5,下方一个珠子表示1。

11、在计算器上,ON/C键是开关及清屏键,CE键是清除键,AC键是归0键。+、-、×、÷键是运算符号键。

怎么样才能打好数学基础

第一,重视数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,学生缺乏对概念的理解。

还有一部分同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?

第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的.。

同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。

小学数学整数的概念

十进制计数法;一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法

整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”.

整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.

四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.

整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.

1.直线、射线、角

直线:向两端无限延伸的线,直线无端点。

射线:能像一个方向延伸的线,射线有一个端点。

线段:不能延伸的线,线段有两个端点。

角:

具有公共端点的两条射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

2.直线、射线与线段的联系和区别

1)直线和射线都可以无限延伸,因此无法量出长短。

2)线段可以量出长度。

3)线段有两个端点,直线没有端点,射线只有一个端点。

3.角的特征

第一单元知识点(四则运算)

1.在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)

2.在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)

3.算式里有括号,先算括号里面的,在算括号外面的。

4.加法、减法、乘法和除法统称四则运算。

5.一个数加上0还得原数,一个数减去0也得原数。

6.被减数等于减数,差是0。

7.一个数和零相乘,仍得0。

8.0除以一个非0的数,还得0。

9.0不能作除数。

10.在解决问题时,如果列综合算式,必须用脱式计算。

11.任何数除以0都得0。(×)因为0不能做除数。

第二单元知识点(观察物体)

1.如何确定物体所在的位置?

(1)明确方向。

(2)明确距离。

2.根据方向和距离来确定物体的位置。

3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。

4.平面图形的一般画法:

(1)先确定某建筑物的方向。

(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)

(3)最后确定距离。

5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。

第三单元知识点(运算定律)

1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。

用字母表示为:a+b=b+a

2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)

3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

用字母表示为:a×b=b×a

4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。

用字母表示为:(a×b)×c=a×(b×c)

5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c

6.类似于乘法分配律的简便公式;

(a-b)×c=a×c-b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)

8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+ca+(b-c)=a+b-c

括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”,“-”变“+”。用字母表示为:a-(b+c)=a-b-ca-(b-c)=a-b+c

9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)

10.在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:

a×(b×c)=a×b×ca×(b÷c)=a×b÷c

括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c

12.另两种简便方法:

(1)把一个因数改写成两个一位数相乘的形式。

(2)把一个因数改写成两个数相除的形式,然后变成乘除混和运算。

第四单元知识点(小数的意义和性质)

1.在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。

2.分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。

3.小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。

4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。

5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……

6.小数的读法:

(1)先读整数部分,再读点,最后读小数部分。

(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。

(3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。

7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

8.利用小数的性质进行小数的化简和改写。

例如:0.70=0.7105.0900=105.09(这是小数的化简)

又如:不改变数的大小,把下面各数写成三位小数

0.2=0.2004.08=4.0803=3.000(这是改写小数)

9.如何比较小数的大小?

先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……

10.小数点移动的规律:

(1)小数点向右

移动一位,小数就扩大到原数的10倍;

移动两位,小数就扩大到原数的100倍;

移动三位,小数就扩大到原数的1000倍;

……

(2)小数点向左

移动一位,小数就缩小到原数的1/10;

移动两位,小数就缩小到原数的1/100;

移动三位,小数就缩小到原数的1/1000;

……

11.把量和单位名称合起来的数叫名数。

12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……

13.复名数:带有两个或两个以上的单位名称的名数。例如:

20元5角8分5吨600克……

14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:

(1)高到低,乘进率,小数点,向右移,移几位,看进率。

例如:1.32千克=(1320)克(58)厘米=0.58米

1千克=1000克1米=100厘米

高→低低←高

1.32×1000=1320克0.58×100=58厘米

(2)低到高,用除法,小数点,向左移,移几位,看进率。

例如:

7450米=(7.45)千米(9.02)吨=9020千克

1千米=1000米1吨=1000千克

低→高高←低

7450÷1000=7.45千米9020÷1000=9.02吨

15.求小数的近似数,可用“四舍五入”法。

16.在表示近似数时,小数末尾的0不能去掉。

17.求小数的近似数的方法:

求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。

例如:9.953≈10(保留整数)

9.953≈10.0(保留一位小数)

9.953≈9.95(保留两位小数)

23.4395≈23.440(保留三位小数)

18.1.0比1精确。保留的位数越多,数就越精确。

19.如何把一个数改写成以万为单位的数?

方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。

方法二:

(1)先找万位;

(2)在万位后面点“.”;

(3)根据实际情况进行化简;

(4)在数的末尾加写一个万字;

(5)如果有单位名称一定照抄过来。

20.如何把一个数改写成以亿为单位的数?

方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。

方法二:

(1)先找亿位;

(2)在亿位后面点“.”;

(3)根据实际情况进行化简;

(4)在数的末尾加写一个亿字;

(5)如果有单位名称一定照抄过来。

注:对于改写的方法,同学们灵活掌握。

21.下列各数中的“6”分别表示什么?

6.32(表示6个一)0.6(表示6个十分之一)0.86(表示6个百分之一)

62.32(表示6个十)3.416(表示千分之一)

22.三位小数一定小于四位小数。(×)例如:1.003﹥0.5678

23.去掉小数点后面的0,小数的大小不变。(×)

应该是去掉小数末尾的零,小数的大小不变。

24.小数就是比1小的数。(×)例如:10.1﹥1

25.近似数是0.5的两位小数有5个。(×)

近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入”法。)

26.近似数4.0与精确数4.0末尾的0都可以去掉。(×)

在表示近似数时,小数末尾的0不能去掉。

27.小数的位数越多,数就越大。(×)

28.小数都比自然数小。(×)

29.整数都大于小数。(×)

30.0.4与0.6之间的小数只有一个。(×)因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。

方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。

求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”,千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。

第五单元知识点(三角形)

1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2.三角形有3条边,3个角,3个顶点。

3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

4.三角形有3条高,3个底。

5.三角形具有稳定性,不易变形。

6.三角形任意两边的和大于第三边。

7.三角形任意两边的差小于第三边。

8.快速判断任意三条线段能否围成一个三角形:看两条较短的线段之和是否大于第三条线段。

9.直角三角形的两条直角边互为底和高。

10.三个角都是锐角的三角形,是锐角三角形。

11.有一个直角的三角形,是直角三角形。

12.有一个钝角的三角形,是钝角三角形。

13.三角形按角分:锐角三角形、直角三角形、钝角三角形

13.三角形按边分:普通三角形、等腰三角形、等边三角形

14.有两条边相等的三角形是等腰三角形。(按边)

有两个角相等的三角形是等腰三角形。(按角)

15.有三条边相等的三角形是等边三角形。(按边)

有三个角相等的三角形是等边三角形。(按角)

注:课本83页三角形集合图。

16.等边三角形是特殊的等腰三角形。

17.等边三角形一定是锐角三角形。

18.等腰三角形的两腰相等,两个底角相等。

19.等边三角形的三条边相等,三个角也相等,都是60度。

20.等边三角形也叫正三角形。

21.等腰三角形中,两腰相交于一点形成的夹角是顶角;两腰与底相交形成的两个夹角是底角。

22.三角形的内角和是180度。

23.多边形的内角和=180度×(多边形的边数-2)

24.任意一个四边形的内角和是360度。

25.两个完全一样的三角形可以拼成三角形、正方形、长方形、平行四边形、和四边形。

26.最少用2个直角三角形可以拼成一个长方形;

最少用3个等边三角形可以拼成一个等腰梯形。

最少用2个等边三角形可以拼成一个菱形。

27.无论是什么形状的图形,没有重叠、没有空隙地铺在平面上,就是密铺。

28.把任何一个三角形的三个内角剪下来,都可以拼成一个平角。

29.所有的等边三角形都是锐角三角形。

30.有三个角的图形一定是三角形。(×)

31.有两个锐角的三角形一定是锐角三角形。(×)因为也有可能是直角三角形。

32.等腰三角形一定是锐角三角形。(×)因为等腰三角形中可能是等腰直角三角形、等腰锐角三角形、等腰钝角三角形。

33.一个大三角形和一个小三角形的三个内角和是不相等的。(×)

因为三角形的内角和是180度。

34.一个钝角三角形里最多有两个钝角。(×)

因为任意一个三角形里至少有两个锐角,如果有两个钝角或两个直角,三角形的内和就大于了180度,根本拼不成三角形。

35.两个三角形一定能拼成一个平行四边形。(×)

因为必须是两个完全一样的三角形才能拼成一个平行四边形。

36.用两个直角三角形一定可以拼成一个长方形。(×)

因为必须是两个完全一样的直角三角形才能拼成一个长方形。

37.由三条线围成的图形叫做三角形。(×)

因为由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

38.三角形的底越长,这条底边上的高就越短。(√)

39.一个三角形的每一条边的长度确定后,这个三角形的形状就再不发生变化。(√)

40一个三角形只有一条高。(×)因为每个三角形都有3条高。

41.直角三角形的两个锐角的和是90度。(√)

42.有一个角是60度的等腰三角形一定是正三角形。(√)

43.0.15时=15分(×)因为每相邻两个时间单位的进率不是100。

44.0.3与0.30的大小相同,但表示的意义不同,计数单位也不同。(√)

45.四个完全一样的正三角形可以拼成一个大三角形。(√)

第六、七单元知识点(小数的加法和减法、平均数与条形统计图)

1.小数加、减法应注意:

(1)小数点要对齐,也就是相同的数位要对齐;

(2)从最低位算起;

(3)得数小数部分末尾有0,一般要把0去掉。

2.在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20-1.86,列竖式时应写成:20.00-1.86

3.整数的运算定律在小数运算中同样适用。

4.关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。

5.条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。

6.在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。如果观察不出折线统计图的趋势来,只好计算后再作比较。

7.折线统计图的特点:能反映变化趋势。

(一)租船问题

共有32人,租小船每条24元,限乘4人;租大船每条30元,限乘6人,怎样租最省钱?

(1)比较哪种船的租金便宜

小船:24÷4=6(元/人)大船:30÷6=5(元/人)

经比较大船便宜

方案一:全租大船

应租大船只数:32÷6=5(条)……2(人)

这2人还要租一条小船,那么总租金就为:

5×30+24=174(元)

如租5大船和1条小船,小船没有做满,还空2人这时不是最省钱的,还可在调整成租4条大船和2条小船,这是大小船刚好做满

租金为4×30+2×24=168(元)

答:租4条大船和2条小船最省钱。

解决租船问题的策略:

(1)根据船的租金和限乘人数,先计算哪种船便宜

(2)再假设所有人都租便宜的船,如果全部做满无空位并且人全部做完,那么这种租法就是最省钱的。

(3)就要调整,尽量做到两种船刚好做满,这时是最省钱的。

(二)鸡免同笼问题:

笼了里有鸡免若干只,从上面数有10个头,从下面数有32只脚。问鸡和免各有多少只?

1、用列举法:

鸡只数

免只数

脚总数

2、假设法:

(1)假设全是鸡,那么就有10×2=20只脚

(2)这样与实际相差32-20=12只脚

(3)当我们把一只鸡想成一只免就多想了4-2=2只脚

(4)说明笼了里12÷2=6只鸡被想成了

(5)那么鸡应有10-6=4只

3、抬脚法:

(1)把鸡和免都抬起两只脚,这时一共抬起了10×2=20只脚

(2)这时还剩下32-20=12只脚,这些都是免子的

(3)一只兔子还剩下4-2=2只脚,说明笼子里有12÷2=6只免子

(4)那么鸡应有10-6=4只

1、卫星运行(三位数乘两位数)

知识点:

估算方法。用四舍五入法进行估算。

利用竖式计算三位数乘两位数。注意,第二个因数的十位要乘三遍,第二步的乘积末尾写在十位上。

补充知识点

时、分、日之间的单位互化。

1时=60分1日=24时

因数中间或末尾有0的三位数乘两位数。

中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。

体育场(实际生活中的估算)

2、知识点:

估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。

神奇的计算工具

3、知识点:

在学生原有基础上进一步认识并会使用计算器。

利用“M+”存储键,“MR”提取键,计算四则运算的题目。

了解计算机中使用的是二进制计数法,就是满2进1。

补充知识点:了解两个因数越接近(即差越小),积越大,两个因数相等时,积是最大的;两个因数的差越大,积越小。

4、知识点:

第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

1、亿以内数的读数方法。

含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。

2、亿以内数的写数方法。

从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。

3、比较数大小的方法。

多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

【四年级上册数学第一单元的知识点梳理】

编程小号
上一篇 2024-11-06 10:12
下一篇 2024-11-06 10:10

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至tiexin666##126.com举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://tiexin66.com/fwzx/372760.html