控制系统设计论文范例6篇

控制系统设计论文范文1 燃气发电机组的空燃比控制系统主要由控制器、传感器、燃气阀、空气阀、混合器等部分组成。 1.1传感器系统过程数据的采集 通过氧传感器、转速传感器、进气压力传感器等传感器实现。氧传感器是系统中重要的传感器之一。在空燃比控制系统中,最常见的反馈参数是排气中氧的含量,它直接反映出燃气燃烧之后留下了多少氧气。因为燃烧室内大部分的氧气,或者说所有的氧气均来自于空气

控制系统设计论文范文1

燃气发电机组的空燃比控制系统主要由控制器、传感器、燃气阀、空气阀、混合器等部分组成。

1.1传感器系统过程数据的采集

通过氧传感器、转速传感器、进气压力传感器等传感器实现。氧传感器是系统中重要的传感器之一。在空燃比控制系统中,最常见的反馈参数是排气中氧的含量,它直接反映出燃气燃烧之后留下了多少氧气。因为燃烧室内大部分的氧气,或者说所有的氧气均来自于空气,所以排气氧含量是空燃比的直接反映。发动机转速的稳定性对发电机组输出交流电的频率稳定性影响较大,而频率的稳定性又是衡量发电机组输出电能质量的主要指标之一。转速传感器多为磁电式传感器,安装在凸轮轴上,由转速传感器内的永磁体、线圈和发动机飞轮齿轮共同作用产生一个交流电压信号,该信号经采样电阻和放大器处理后,输入到控制器CPU内。

1.2燃气阀及空气阀

燃气阀及空气阀是带步进电机的电动调节阀,也是系统的执行器。控制器利用PWM驱动步进电机,进而调节阀门开度。

1.3空燃比控制器空燃比控制器是空燃比控制的“大脑”。在本系统设计中,空燃比控制器基于DSP处理器设计,由检测电路、空燃比控制电路和通讯接口电路等部分构成。

2空燃比控制策略

在空燃比控制系统中,系统的控制目标是要使稳态下空燃比的平均值在理想值附近,而且在突加突卸负载造成空燃比偏离理想值时,系统能迅速响应,将空燃比控制在理想值附近。

2.1RBF神经网络

整定PID控制策略在工业控制中,PID控制器应用广泛。由于发动机的空燃比受进入气缸的空气量转速、负荷、温度、气体燃料喷射器的响应速度和喷度等多种因素的影响,所以采用PID控制,根据反馈实时调整进气量,使之达到精确控制。人工神经网络是一种在生物神经网络的启示下建立的数据处理模型。其中径向基函数(RBF)模拟了人脑中局部调整相互覆盖接受域的神经网络结构,能以任意精度逼近任意非连续函数,是一种局部逼近网络,收敛速度快。本设计采用并行控制策略来实现发动机空燃比的控制,前馈控制采用RBF神经网络控制器,反馈控制则采用PID控制器。前馈控制及时快速响应,实现发动机的逆动态模型;反馈控制则保证系统的稳定性,抑制干扰信号对系统的扰动。

2.2仿真实验

本文采用MATLAB软件Simulink工具箱进行燃气发电机组空燃比控制系统仿真。燃气发电机组空燃比控制系统采用常规PID控制的仿真,通过对比可以发现:在稳态时,与常规PID相比,并行控制的稳态误差小,空燃比基本能稳定在理论空燃比附近;在动态时,与常规PID相比,并行控制的超调量小,即使在加入干扰的情况下,超调量δp也可控制在20%以内。

3结语

控制系统设计论文范文2

关键词:远程控制双音多频网络通讯无线通讯家庭自动化

21世纪是信息化的世纪,各种电信和互联网新技术推动了人类文明的巨大进步。数字化家居控制系统的出现使得人们可以通过手机或者互联网在任何时候、任意地点对家中的任意电器(空调、热水器、电饭煲、灯光、音响、DVD录像机)进行远程控制;也可以在下班途中,预先将家中的空调打开、让热水器提前烧好热水、电饭煲煮好香喷喷的米饭……;而这一切的实现都仅仅是轻轻的点几下鼠标,或者打一个简单的电话。此外,该系统还可使家庭具有多途径报警、远程监听、数字留言等多种功能,如果不幸出现某种险情,您和110可以在第一时间获得通知以便进一步采取行动。舒适、时尚的家居生活是社会进步的标志,智能家居系统能够在不改变家中任何家电的情况下,对家里的电器、灯光、电源、家庭环境进行方便地控制,使人们尽享高科技带来的简便而时尚的现代生活。

1系统的总体结构及工作过程

智能家居系统由系统主机、系统分机、Internet服务器和网络接口等部分组成。其中系统主机通过服务器(个人计算机)连入Internet,并通过自己的PSTN公用电话交换网接口电路连入PSTN。其结构图如图1所示。主机与分机通过无线传输组成星形拓扑结构。系统主机通过本地无线传输网络同系统分机进行通讯、传输控制命令和反馈信息。

该系统正常工作时,用户可以通过Internet和PSTN两种网络进行访问,当通过Internet访问时,本系统可提供一个界面友好的终端软件,用户只需登陆到运行在家中的服务器即可对家中的设备进行远程控制;当通过PSTN访问时,本系统将为用户提供语音操作界面。其工作流程如图2所示。

2系统的硬件构成

本系统的硬件主要有系统主机与系统分机两大部分。系统主机由单片机AT89C52和各种接口电路组成,如图3所示。系统分机由单片机AT89C52和各种接口电路、传感器单元电路、固态继电器控制电路组成,并由固态继电器控制具体设备,具体硬件组成框图如图4所示。

通过系统主机的各种接口电路可将主机CPU从繁忙的计算中解脱出来,以便把主要精力运用在控制和信息传递上。系统主机主要依照各个功能电路的输出结果进行逻辑判断和控制命令的输出。系统分机的各种接口电路和主机相似,只是根据设备的不同(传感器单元)有着细节上的变化。下面主要介绍系统主机的各种接口电路。

2.1nRF401无线数据传输电路

无线数据传输电路由Nordic公司的单片UHF无线数据收发芯片nRF401及其电路构成。nRF401采用FSK调制解调技术,其工作效率可达20kbit/s,且有两个频率通道供选择,并且支持低功耗和待机模式。它不用对数据进行曼彻斯特编码,其天线接口设计为差分天线,因而很容易用PCB来实现。

2.2看门狗电路

看门狗电路由MAX813L及其元件组成。通常,在单片机的工作现场,可能有各种干扰源。这些干扰源可能导致程序跑飞、造成死机或者程序不能正常运行。如果不及时恢复或使系统复位,就容易造成损失。看门狗电路的作用就是在程序跑飞或者死机时,能有效地使系统复位以使系统恢复正常运转。因此,在程序中定期给P1.5送入看门狗信号,就可以保证在程序运行异常时,由MAX813L使单片机复位。

2.3DS1307时钟接口电路

DS1307时钟芯片是美国DALLAS公司生产的I2C总线接口实时时钟芯片。DS1307可以独立于CPU工作,它不受晶振和电容等的影响,并且计时准确,月积累误差一般小于10秒。此芯片还具有掉电时钟保护功能,可自动切换到后备电源供电。同时还具有闰年自动调整功能,可以产生秒、分、时、日、月、年等数据,并将其保存在具有掉电保护功能的时间寄存器内,以便CPU根据需要对其进行读出或写入。由于单片机AT89C52没有I2C总线接口,因此,要驱动DS1307,就必须采用单主机方式下的I2C总线虚拟技术。在此方式下,以单片机为主节点(主器件),主器件永远占有总线而不出现总线竞争,且可以用两根I/O口线来虚拟I2C总线接口。I2C总线上的主器件(单片机)可在时钟线(SDL)上产生时钟脉冲,在数据线(SDA)上产生寻址信号、开始条件、停止条件以及建立数据传输的器件。任何被选中的器件都将被主器件看成是从器件。在这里,DS1307作为I2C总线的从器件。I2C总线为同步串行数据传输总线,其内部为双向传输电路,端口输出为开漏结构,因此,需加上拉电阻。

2.4MT8880C双音频编解码电路

由于单片机是通过MT8880C芯片得到PSTN网络的双音频信号解码输出,也就是说,单片机可以识别来自PSTN网络的控制信号,用户可以根据系统的语音提示进行按键选择以实现用户身份的识别与远程控制。因此,利用MT8880C的双音频编码功能,系统可以在紧急时刻将用户预置的紧急电话打到PSTN网络,从而把损失减少到最低。

2.5ISD4004语音录放电路

ISD4004是美国ISD公司生产的一种语音录放芯片。它可录制8~16分钟的语音信号。该芯片可提供SPI标准接口和单片机进行接口,其语音的录放控制均通过单片机来实现。该芯片的一个最大特点是可以按地址编程录放,因而可由ISD4004和单片机编程控制来构成本系统与PSTN网络用户的语音平台。由于ISD4004的INT和RAC脚输出为开漏结构,因此需要加上拉电阻。

2.6MAX202串行通讯电路

通讯电路可由串行通讯专用芯片MAX202组成,通过此电路可以方便地与PC机进行串行通讯。

2.7铃流检测与摘挂机控制电路

当系统被呼叫时,电话交换机发出铃流信号。振铃为25±3V的正弦波,失真小于10%,电压有效值为90±15V。振铃信号以5秒为周期,即1秒送,4秒断。由于振铃信号电压比较高,所以先要通过高压稳压二极管进行降压,然后输入至光耦。再经光耦隔离转换后,从光耦输出时通时断的正弦波,最后经RC回路进行滤波以输出标准的方波。该方波信号可以直接输出至单片机的定时器1进行计数,以实现对铃流的检测。

由于程控电话交换机在电话摘机时电话线回路电流会突然变大(约30mA),因此,交换机检测到回路电流变大就认为电话机已经摘机。自动摘挂机电路可以通过单片机的P1.7来控制一个固态继电器,固态继电器的控制端应连接一个大约300Ω的电阻后再接入电话线两端,从而完成模拟摘挂机。

3系统软件编制

本系统软件主要由系统主机和系统分机的C51程序和系统与Internet网络通讯程序组成。

3.1系统主机程序的编制

系统主机程序主要用于实现系统的总体功能。包括无线数据传输程序、看门狗程序、时间戳程序、双音频编解码程序、语音录放程序、串行通讯程序、铃流检测与摘挂机控制程序、系统初始化程序、意外事件处理程序等。程序编制以消息驱动为主导思想。消息由计数器中断1、外部中断0和串行中断产生,在中断服务程序中,应将相应的状态位置位,而在消息循环中则应按相应的状态位调用功能函数,然后由功能函数将相应的状态位清0并完成所需功能,并最后返回到消息循环中。其程序流程如图5所示。该系统的分机程序和主机类似,故此不再详述。

3.2系统与Internet网络通讯程序的编制

这部分通讯程序分为服务器和客户端两个程序,主要通过Internet网络完成用户的控制功能。

服务器程序主要完成客户端与系统主机通讯的中转,即将客户端发来的控制或者查询命令翻译成系统主机能识别的格式,或者将系统主机收到的报警等信息上传到客户端。服务器程序使用Socket与客户端进行Internet通讯。

客户端程序是运行在远端用户的控制界面,主要用于完成家居内状态的显示以及对家居内电器的远程控制,同时使客户端直接连接到服务器。

控制系统设计论文范文3

PMM8713功能介绍

PMM8713是专用的步进电机的步进脉冲产生芯片,它适用于三相和四相步进电机。如图1所示PMM8713的引脚,Cu为加脉冲输入端,它使步进电机正转,Cp为减脉冲输入端,它使步进电机反转,Ck

为脉冲输入端,当脉冲加入此引脚时,Cu和Cp应接地,正反转由U/D的电平控制,EA和EB用来选择励磁方式的,可以选择的方式有一相励磁、二相励磁和一二相励磁,ΦC用来选择三、四相步进电机,Vss为芯片工作地,R为芯片复位端,Φ4~Φ1为四相步进

脉冲输出端,Φ3~Φ1为三相步进脉冲输出端,Em为励磁监视端,Co为输入脉冲监视端,VDD为芯片的工作电源(+4~+18V).其具体的原理框图如4-3-4所示:

4.4显示电路与键盘的选择

显示电路的用8279芯片来驱动,8279芯片分别接两排显示器,每排为4位显示,分别用来显示步进电机的实际转速与给定转速。

8279与CPU的连接框图如4-11所示:

8279芯片的具体介绍如下;

1)DB0~DB7:双向数据总线。在CPU于827数据与命令的传送。

2)CLK:8279的系统时钟,100KHZ为**选择。

3)RESET:复位输入线,高电平有效。当RESET输入端出现高电平时,8279被初始复位。

4)/CS:片选信号。低电平使能,使能时可将命令写入8279或读取8279的数据。

5)A0:用于区分信息的特性。当A0=1时,CPU向8279写入命令或读取8279的状态;当A0为0时,读写一数据。

6)/RD:读取控制线。/RD=0,8279会送数据至外部总线。

7)/WR:写入控制线。/WR=0,8279会从外部总线捕捉数据。

8)IRQ:中断请求输出线,高电平有效。当FIFORAM缓冲器中存有键盘上闭合键的键码时,IRQ线升高,向CPU请求中断,当CPU将缓冲器中的输入键数的数据全部读取时,中断请求线下降为低电平。

9)L0~SL3:扫描输出线,用于对键盘显示器扫描。可以是编码模式(16对1)或译码模式(4对1)。

10)~RL7:反馈输入线,由内部拉高电阻拉成高电平,也可由键盘上按键拉成低电平。

11)FT、CNTL/STB:控制键输入线,由内部拉高电阻拉成高电平,也可由外部控制按键拉成低电平。

12)TB0~3、OUTA0~3:显示段数据输出线,可分别作为两个半字节输出,也可作为8位段数据输出口,此时OUTB0为最低位,OUTA3位最高位。

13)消隐输出线,低电平有效。当显示器切换时或使用消隐命令时,将显示消隐。具体芯片理框图如4-4-1所示:

键盘的连接一般有两种方式,一种是独立式键盘;一种是行列式键盘。独立式键盘就是各个键相互独立,每个键盘接一根输入线,通过检测输入线的电平状态来确定那个键按下。这种键盘的输入线较多,结构复杂,一般适用于按键较少操作速度较高的场合。而行列式键盘是由行和列线交义组成,一般用于按键较多的场合。本次设计一共用9个键因此采用行列式键盘。具体的原理图如4-4-2所示:

图4-4-2键盘连接图

显示电路的选择

显示电路选用两排LED显示,每排分别为四位。能满足设计的要求,转速范围为0至1000。LED显示电路有两种接法,一种为共阴极,一种为共阳极。原理图如4-14所示:

4.5反馈电路的选择

应选用光电编码器作为反馈元件,光电编码器与步进电机是同轴的输出经过放大送到计算机。并通过显示器显示出步进电机的实际转速。关于光电编码器的说明如下;

4.5.1光电编码器原理

光电编码器,是一种通过光电转换将位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

图4-5-1光电编码器的原理图

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

本次设计用绝对式编码器其原理如下:

绝对编码器是直接输出数字量的传感器,它的圆形码盘上沿径向有若干同心磁道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。绝对式编码器是利用自然二进制或循环二进制(格雷码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点如下:

1)可以直接读出角度坐标的绝对值;

2)没有累积误差;

3)电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。

4.6电源电路设计

本次设计用了+5V、+12V电源,采用的是78系列的集成固定三端稳压管。78系列集成稳压器输出稳定,漂移小,精度也比较高。其内部也有完善的保护电路。它有风部过流保护,保证输出电流部会超出最大允许值;它有内部热保护电路,如果输出管的结温达到允许的最大值,它会知道减小输出电流;它内部还有工作区限制电路。使稳压器的工作台不进入不安全区。因此,它的可靠性高。另外,它只有三条引脚,移位输入,移位输出,移位公共端,使用起来很简单。

1.变压

电源变压器将220V的交流电压变为所需的交流电压值。因为在整流、滤波和稳压电路中有一定的压降,所以要使输出电压比所需电压高2V~3V。

2.整流

整流电路将交流电压变为脉冲的直流电压,常用的整流电路有单相半波,全波,桥式和倍压整流电路。这里采用单相桥式不可控整流电路。

3.滤波

滤波电路用于滤去整流输出电压中的波纹,一般由电抗元件组成。如要负载两端并联电容或与负载串联电感L。以及C和L组合而成的各种复式滤波电路。因为电容滤波电路简单,负载直流电压较高,波纹较小,所以我们采用的是电容式滤波。

4.稳压

稳压的作用电当电网电压波动,负载和温度变化时,维持输出直流电压的稳定。本设计采用三端集成稳压器,常用的是7800系列和7900系列。前者是三端固定正输出集成稳压器,后者是三端固定负输出极集成稳压器,整流后的输出波形与纯直流相差甚远,须经滤波才能作直流电源用。最常用的元件是电容。整流输出的电压升高时,输出的电流一面供给负载应用,一面给滤波电容充电。当整流输出电压开始下降时,电容向负载放电以维持输出电压,总的输出电压波形就平滑得多。

下面以电源+12V为例介绍一下电路的工作原理:

图4.6+12电源电路图

220V,50HZ的交流电压变压后,输出+15V左右的交流电压其频率仍为50HZ,交流信号经桥式整流电路进行全波整流,然后,经电解电容滤波。最后,经CW7805(三端固定稳压器)输出的便是一个平稳的+12V的直流电压信号。电容C4和C5的作用是滤高频波和抑制自激振荡。

4.7抗干扰设计

由于系统中不可避免会从外界引入干扰,影响系统的控制精度,使系统的稳定性变差,故采用了硬件和软件抗干扰措施。

1.干扰对微机的作用可分为四部分:

①输入系统:它使模拟信号失真,输入数据信号出错。

②输出系统:使各输出信号混乱,不能反映微机系统的真实输出量。从而导致一系列严重的后果,同时,还把现场的高电压设备与主机隔离,防止出现高频干扰现象。

③微机控制的内核,使三总线上的数据信号混乱,CPU得到错误的数据信息,使运算操作数失真。

④电源系统:我们设计所采用的芯片都由直流稳压电源供电。这些直流稳压电源都是由220伏转化而来,有可能产生波动现象。使电源的压降上升或下降,对主机运行产生干扰。

2.本次设计采用的硬件抗干扰措施有:

①在电路排列方面,模拟电路和数字电路之间集中在一起,器件之间尽量缩短距离减小寄生电容。

②在线路设计中,将所有器件的模拟地线和数字地线都区分开,两者的地线不要混乱,分别与电源地线相连。

③电源系统的干扰大部分是高次谐波,然后接稳压器件,以保持电源稳定。

④采用分散独立功能模块供电,在每块系统功能模块上用集成三端固定稳压器如7805、7812、7815、7915等稳压源,而且也减少了公共阻抗的相互耦合,大大提高了供电的可靠性。

3.程序监视系统中的抗干扰(电源部分)

WATCHDOG本身能独立工作,基本上不依赖于CPU,当电源受干扰而掉电时,WATCHDOG自动产生中断。使CPU备用电源起作用,对CPU正在执行的数据进行保护。

4.8看门狗电路

工业环境中的干扰大多是以窄脉冲的形式出现,而最终造成系统故障的多数现象为“死机”。究其原因是CPU在执行某条指令时受干扰的冲击,使它的操作码或地址码发生改变,致使该条指令出错。这时,CPU执行随机拼写的指令,甚至将操作数作为操作码执行,导致程序“跑飞”或进入“死循环”。为使这种“跑飞”或进入“死循环”的程序自动恢复,重新正常工作,就是看门狗。若程序发生“死机”,则看门狗电路产生复位信号,引导单片机程序重新进入正常运行。

此外,工业现场由于诸多大型用电设备的投入或撤出电网运行,往往造成系统的电源电压不稳定,当电源电压降低或掉电时,会造成重要的数据丢失,系统不能正常运行。若设法在电源电压降至一定的限值之前,单片机快速的保存重要数据,将会最大限度地减少损失。在掉电方式下单片机内所有运行状态均被停止,只有片内RAM和SFR中的数据被保存起来。在单片机系统可借助于一定的外部附加电路监测电源电压,并在电源发生故障时及时通知单片机(本次设计是通过引发INT0中断来实现的)快速保存重要数据,使电源恢复正常,取消掉电方式,通过复位单片机,使系统重新正常。

4.8.1MAX813L功能简介

MAX813L是美国MAXIM公司推出的微处理机系统监控集成芯片,该芯片的价格低,减少了器件个数,所构成的电路性能更可靠,MAX813L提供如下四种功能:

1.上电、掉电以及供电电压下降情况下的复位输出,复位脉冲宽度典型值为200MS。

2.独立的看门狗输出。如果看门狗在1.6S内未被触发,其输出将变为低电平。

3.1.25V门限值检测器,用于电源故障报警、电池低电压检测或+5V以外的电源的监控间[6]。

4.低电平有效的手动复位输入。

4.8.2看门狗电路各引脚功能

1.手动复位输入端(MR):当该端输入低电压保持140ms以上,MAX813L就输出复位信号。输入端的最小输入脉冲宽要求可以有效的消除开关的抖动。

2.工作电源端(VCC):接+5V电源。

3.电源接地端(GND):接0V参考电平。

4.电源故障输入端(PFI):当该端输入电压低于1.25V时,5号引脚输出端的信号有高电平变为低电平。

5.电源故障输出端(PFO):电源正常时,保持高电平,电源电压变低或掉电时,输出由高电平变为低电平。

6.看门狗信号输入端(WDI):程序正常运行时,必须在小于1.6s的时间间隔内向该输入端发送一个脉冲信号,以清除芯片内部的看门狗定时器。若超过1.6s该输入端收不到脉冲信号,则内部定时器溢出,8号引脚由高电平变为低电平。

7.复位信号输出端(RST):上电时,自动产生200ms的复位脉冲:手动复位端输入低电平时,该端也产生复位脉冲。

8.看门狗信号输出端(WDO):正常工作使输出保持高电平,当WDI端在1.6S接收不到信号时,该端输出信号由高电平变为低电平。

如图5-6给出了MAX813L在单片机系统中的应用电路图。此电路可以实现上电,瞬时掉电以及程序运行实现“死机”时的自动复位和随时的手动复位;并且可以实时的监视电源故障,以便及时地保存数据[6]。

本电路巧妙的利用了MAX813L的手动复位输入端。只要程序一旦跑飞引起程序“死机”,WDO端电平由高到低,当/WDO变低超过140ms,将引起MAX813L产生一个200ms的复位脉冲(本次设计中将MAX813L的RET端同时8031、8155的复位端RESET相连,使之同时复位)。同时使看门狗定时器清0和使引脚变成高电平。也可以随时使用手动复位按钮使MAX813L产生复位脉冲,由于为了产生复位脉冲端要求低电平至少保持140ms以上,故可以有效的消除开关抖动。

该电路可以实时的监控电源故障(如掉电、电压降低)。图5-6中R1的一端接未经稳定的直流电源。电源正常时,确保R2上的电压高于1.6V。当电源发生故障,PFI输入端的电平低于1.25V时,电源故障输出端电平由高变低,引起单片机中断,CPU中断相应服务程序,保护数据,断开外部用电电路等。

第5章算法的设计:

算法对于步进电机调速系统设计是一个相当重在的环节,因为只有确定了算法之后才能对步进电机的速度进行准确的控制,并时也能达到精确的调速目的。同时算法也是编写软件的前提与基础。控制算法有多种,常用的两种算法是PID和模糊控制算法。

PID控制与模糊控制是两种常用的控制方法,但它们还存在一些不足,如一般PID控制容易产生超调、模糊控制的稳态精度不高,在这两种控制方法基础上进行改进,可产生多种更好的控制方法。本文采用的复合PID控制算法和带动态补偿的模糊控制算法克服了以上缺陷,取得了较好的实验效果。

5.1PID控制算法

PID调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系,进行运算,将其运算结果用以输出控制,将基本PID算式离散化可得到位置型PID控制算法,对位置型PID进行变换可得到增量型PID控制算法。对控制精度要求较高的系统一般采用位置型算法,而在以步进电机或多圈电位器做执行器件的系统中,则采用增量型算法。

PID是一种工业控制过程中应用较为广泛的一种控制算法,它具有原理简单,易于实现,稳定性好,适用范围广,控制参数易于整定等优点。PID控制不需了解被控对象的数学模型,只要根据经验调整控制器参数,便可获得满意的结果。其不足之处是对被控参数的变化比较敏感。但是通过软件编程方法实现PID控制,可以灵活地调整参数。,尽管近年来出现了很多先进的控制算法,但PID控制仍然以其独有的特点在工业控制过程中具有相当大的比重,且控制效果相当令人满意。

连续PID控制器也称比例-积分-微分控制器,即过程控制是按误差的比例(P-ProportionAl)、积分(I-IntegrAl)和微分(D-DerivAtive)对系统进行控制,其系统原理框图如图5-1所示:

它的控制规律的数学模型如下:

\*MERGEFORMAT\*MERGEFORMAT(5-1)

或写成传递函数形式:

\*MERGEFORMAT(5-2)

式中,e(t):调节器输入函数,即给定量与输出量的偏u(t):调节器输出函数。

Kp:比例系数;

T:积分时间常数;

T:微分时间常数。

将式(2-1)展开,调节器输出函数可分成比例部分、积分部分和微分部分,它们分别是:

⑴比例部分比例部分的数学表达式是\*MERGEFORMAT,p在比例部分中,Kp是比例系数,Kp越大,可以使系统的过渡过程越快,迅速消除静误差;但Kp过大,易使系统超调,产生振荡,导致不稳定。因此,此比例系数应选择合适,才能达到使系统的过渡过程时间短而稳定的效果。

图为比例调节器

(5-3)

比例调节器

其中:U控制器的输出

\*MERGEFORMAT比例系数

E调节器输入偏差

控制系统设计论文范文4

1电梯控制系统设计的基本情况

国民经济的迅速发展直接催生了房地产开发的热潮,因此电梯行业也从中受益。面临巨大的市场机遇,如何在已趋成熟的电梯行业里独树一帜获得更多的消费者,使公司更好更快的发展。在电梯自动控制系统研究方面应该主抓三个方面:

(1)了解电梯自动系统的控制要求,在研制初期首先要明确该电梯的使用环境、容积、载重等基本情况。

(2)电梯自动控制系统的配置。根据配置的不同在控制系统设计时应该有相应的区别,配置是整个控制系统的核心部件,确保电梯能够正常的工作。

(3)软件的设计。在要求和配置都明确之后就是要对该系统的软件开发以及研制,软件程序的开发主要有三个内容:图纸设计、核心程序的设计、电梯运行灵活性的设计等,该软件所要考虑的问题趋于全面,应能解决在使用过程中遇到的问题。

2电梯运行原理

在电梯的设计中最底层和最高层均会有信号传递按钮,在中间楼层内均由两个信号传递按钮,这四个按钮在电梯正常运行时是有明确分工的,最高层的信号传递按钮在接到信号时将信号向下传递,而当电梯在最底层时若高层或者中间层有信号输入时,那么底层的信号按钮把信号向上传递,而当电梯位于中间楼层时,有信号输入后,两个信号传递按钮会一个向下传递信号,一个向上传递信号。当乘客进入轿厢之后通过内选信号来选择楼层,在通过指定或者轿厢内部的关闭按钮将厢门关闭,在即将达到目标楼层时减速装置开始启动,在电梯运行过程中接受到正向的呼叫信心时则会在相应的楼层时开门等待,若接收到反向的呼叫时,电梯仍按照目前的运行方向继续工作直至此项任务完成之后再去响应呼叫指令。

3电梯控制系统的主要结构和内容

可编程控制器(简称PLC),它的特点是运用起来很灵活,同时数字语言也比较清晰,因此广泛应用于电梯自动控制系统。电梯的运行指令主要是由两个控制程序来实现,其一是自身内部运行控制程序,其二是外部呼叫信号,外部呼叫信号具有随机性,因此在控制的过程中不能单纯的依靠顺序或者逻辑控制方法,应该由逻辑和随机相结合的控制系统设计方案。

3.1系统的控制要求

电梯自动控制模拟系统由机械装置和PLC控制系统组成,对于电梯的基本运行采用顺序逻辑控制模式进行,电梯的运行控制是根据电梯目前的运行状态和随机信号状态进行控制的。在电梯的运行控制中,每一个楼层都要设置一个接近开关其目的是检测当前轿厢的准确位置,还有就是能明确知道轿厢的运行方向。电梯运行的状态、承载的情况、所到达的楼层均通过LED显示屏显示出来。另外还要设置电梯运行方向的互锁功能以及电梯的安全保障措施,确保电梯在运行过程中安全稳定可靠。

3.2PLC与系统的配置

在进行硬件配置时我们选用了FXIN型可编程控制器,主要是考虑其具有几个独特的优点:(1)FXIN的控制器非常灵活,除过主机单元还可以进行扩展,比如A/D模块、D/A模块、I/0模块,这些模块的都具有一些特殊功能。在I/0模块中需要设计30个点,分别是14个输入点和16个输出点,主机方面一般采用FX1N-40MR等小型的基本单元即可。(2)FX1N型号的控制器指令方面的功能相对较多,包括有27个基本指令附加有89条功能性指令,在指令的执行速度方面也较快。(3)FX1N型号的控制器内部设有状态继电保护器、辅助继电保护器、寄存器、定时器和计数器,直接能够满足电梯控制系统的需要。(4)该种控制器的编程可以使用第三方编程软件,在编程的过程中可以使用相关指令或者梯形图语言来进行。

3.3软件设计的主要特点

(1)在进行软件的设计时在同方向运行应优先考虑就近原则,这个原则在设计的过程中依据的电梯的运行方向以及具体的位置,若轿厢的运行方向是向上,但是在轿厢目前位置上方有外部呼叫信息,那么呼叫楼层所对应的继电保护器此时的状态显示为开,直到电梯到达所呼叫的楼层,继电保护装置随之关闭,就这样反复操作的过程中,继电器保护装置和呼叫开关相互合作可以完成电梯运行的所有操作。

(2)随机+逻辑控制方式。如果电梯在想某一个楼层运行时,那么所要达到的楼层有检测系统的开关,它的作用就是准确无误的对这一楼层实施判断,判断的主要内容包括该楼层的之前的呼叫信号,如果检测有呼叫信号,那么应该减速运转停止运行,如果没有检测到呼叫信号,那么轿厢将继续沿着原先的目标楼层运行。

(3)软件显示技术。通过软件显示技术可以清楚的判断轿厢的运行楼层载重情况,并将这些情况转化成SCD码然后实行数据输出,再通过硬件设备和软件系统将具体的数字显示在LED显示屏上。如果电梯在运行过程中发生故障,那么可编程控制器能够对电机实施有效的控制,将所有指令瞬时终止。

4结束语

控制系统设计论文范文5

1.1包装线码垛吊具结构

近年来,为了迎合高速包装生产线的发展需求,吊具结构以适应包装线产品的码垛方式、排列方式和低质量为设计准则,各种方案层出不穷[2]。本文所设计的电路控制系统所应用的码垛吊具。吊具主要工作过程为当产品被推送到指定位置后两侧气缸夹紧,压板电机启动,带动压板夹紧,吊具移动到码垛位置后,主轴电机启动,带动卷帘滚子两侧分开,产品下落到指定位置后,气缸、压板和卷帘滚子回到初始位置。

1.2包装线码垛吊具控制要求

包装线码垛吊具和其工作过程,控制系统的控制执行元件分为主轴电机、压板电机和侧夹紧气缸。在多数包装生产线中,为了节省生产空间,包装运输线和码垛时候的实垛运输线1—包边;2—主梁;3—侧板;4—夹紧气缸;5—输送链;6—卷帘滚子;7—细梁;8—主轴电机;9—压板电机;10—压板图1包装线码垛吊具结构是两条运行方向相反的平行线,码垛机器人将码垛层旋转90°,从实垛线转移到运输线垛架之上。综合吊具结构和码垛运输方式,吊具控制时序为:码垛过程,码垛产品到达指定位置压板箱电机夹紧侧夹紧气缸夹紧码垛机器人码垛。卸垛过程,码垛机器人到达指定位置主轴电机打开卷帘侧夹紧气缸松开压板箱电机松开主轴电机关闭卷帘。

2包装线码垛吊具控制系统硬件设计

控制系统设计主要包含硬件设计和软件设计两部分,硬件设计分为核心模块、控制执行模块、信号采集模块和信号转换隔离模块。软件设计主要是通过编程的手段控制硬件部分,使得执行部件按照码垛生产线的实际需求运作。

2.1核心模块设计

核心模块为单片机微处理器,其是执行元件的控制中心,本文所用的STC公司生产的STC89C52单片机[3],采用上电复位方式,晶振频率为11.0592Hz。单片机的工作电平为5V,电源供电模块既要满足单片机的工作电压需求,同时也要满足后续电路电压需求。电源供电模块将220V交流电转化为24V直流电,再通过电源转换芯片降低电压。供电模块由变压器、全桥整流电路、滤波电路和直流稳压电路组成,。变压器输入端经过熔断器连接供电电源,变压器后接由4个二极管组成的桥式整流电路,整流后得到一个电压波动很大的直流电源,再通过电容滤波电路和稳压电路得到24V直流电。本文选用LM7805三端稳压器,能够稳定输出24V直流电,内置过载和过流保护电路,且带有散热片保护。信号采集端采用较高的输送电压,能够保证采集的可靠性,本文采用电源转换芯片,使用电源分步转换的方式防止芯片过热,并在转换过程中考虑到外部的稳压滤波,保证了电源的稳定性。电源转换芯片为M20-24S12和M20-12S5,分别将电源电压由24V转换为12V及将12V转换为5V。

2.2开关信号采集电路设计

在吊具工作过程中,单纯地靠时间控制各个执行元件误差较大,不能达到工作要求,因此将各个执行部件的触发通过行程开关来实现,单片机检测开关信号,然后控制执行元件。由于采用低电平实现控制指令要比高电平好得多[4],因而采集时采用高电平,在单片机引脚接口处转换成TTL电平,且高电平和TTL电平之间采用光耦隔离。

2.3执行电路控制设计

电机控制分为主轴电机控制和压板箱电机控制,硬件电路部分主要是为了实现电机的正反转控制。本文采用固态交流继电器来实现交流电机的正反转,固态交流继电器可以与单片机直接相连,单片机的各引脚输出高低不同的电平,选择性地链接各个固态继电器,从而达到控制电机正反转的目的。气缸控制电路主要实现对两个侧夹紧气缸的控制,侧夹紧气缸的控制又可以归结为对电磁阀的控制,其控制电路如图7所示。

3包装线码垛吊具控制系统软件设计

软件所要实现的功能是让单片机接受信号采集电路所采集的开关信号,同时发出指令对两台电机和电磁阀进行控制。包装线码垛过程分为码垛过程和卸垛过程,本文采用C语言编程。

4结束语

控制系统设计论文范文6

系统以MSP430F2616微控制器为核心,这款单片机有良好的低功耗性能,适宜开发家用电子产品。当系统上电运行后,WSN节点会通过湿度测量模块对当前湿度进行采集,湿度测量模块选用HS1101湿敏电容与NE555构成多谐振荡器,以此将空气湿度变化转变为电容值的变化,单片机通过采集多谐振荡脉冲频率,可得到湿度值。STC12C5A50S2单片机获得湿度值后,通过NRF24L01传递给主控单片机并显示于TFT液晶,用户可通过按键(“加湿开”、“加湿关”、“干燥开”、“干燥关”“、复位”)进行人机交互。湿度数据与预设湿度范围相比较,若超出范围,MCU可通过控制继电器来驱动加湿与抽湿执行机构。此外,主控系统拥有华为GTM900-CGSM通信模块,支持短信查询功能,用户可借由手机软件平台对湿度进行查询与控制现信息的远距离传输与闭环控制。为满足系统供电需要,选用220V-12V电源适配器进行供电输入,作为加湿器,抽湿器电源;开关集成稳压芯片LM2596输出5V为单片机、NRF24L01模块、TFT液晶逻辑供电;线性稳压元件LM1117稳压输出3.3V为无线主接收模块、TFT液晶背光供电。

2系统软件设计

主程序开始,先初始化各个模块,然后等待命令,若有命令则判断是控制命令还是查询命令,若为查询命令,则向客户端发送信息,若为控制命令,执行控制动作;若无控制命令,判断无线接收数据,若有则做数据处理,若无则数据更新显示,并返回等待命令。

3实验测试及分析

3.1测试方案

系统测试采用先模块单独调试再系统联调的方法。①测试电源模块的输出,得到功率,电压电流信息。②硬件仿真测试单片机,测试液晶显示是否正常。③湿度传感器测试湿度是否采集值成正比,同时测试加湿干燥机构在供电正常情况下能否正常工作。④用PC机的串口调试和GSM模块之间串行通信。⑤整机系统连接好,重复以上步骤,测试数据接收。通过以上测试,可判断整机运行是否正常。

3.2测试数据

测试数据包括以下四部分:①通过万用表测试电源模块的输出:+5V和+3.3V的误差在±0.1Y以内,接上所有负载后输出的电流达1A;②通过设置不同的标准状态值:测试到系统的超标自动发送短信至终端功能正常;③终端发送查询指令至系统:测试到手持机终端接收到的数据和TFT液晶显示屏显示的数据完全吻合;④终端发送控制信息至系统:得到动作与指令相同。

3.3结果分析

经过各项性能的测试,系统指标和参数基本达到预期的效果,如果能考虑到实际的能效,系统将更加完善。

4结束语

编程小号
上一篇 2024-05-13 08:10
下一篇 2024-05-13 08:11

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至tiexin666##126.com举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://tiexin66.com/syfw/504249.html