2024全球气候变暖的影响范例6篇

全球气候变暖的影响范文1 关键词:气候变暖;影响;农业;对策 自西方工业化以来,世界人口在急剧地增长,人类在日益强大的大规模生产和经济活动中,大量开垦耕地、掠夺与毁坏森林资源,大量地燃烧化工原料,释放了大量的温室气体,致使大气成分发生变化,导致了全球气候日趋变暖。据美国科学家(1979)估计,如果大气CO2浓度增加1倍,全球平均气温将增加1.5℃~4.5℃。进一步研究指出

全球气候变暖的影响范文1

关键词:气候变暖;影响;农业;对策

自西方工业化以来,世界人口在急剧地增长,人类在日益强大的大规模生产和经济活动中,大量开垦耕地、掠夺与毁坏森林资源,大量地燃烧化工原料,释放了大量的温室气体,致使大气成分发生变化,导致了全球气候日趋变暖。据美国科学家(1979)估计,如果大气CO2浓度增加1倍,全球平均气温将增加1.5℃~4.5℃。进一步研究指出,如果人类继续按照目前速度释放温室气体,那么CO2的有效倍增将出现在2060年左右。如此之大的增温幅度和速度,是我们这个星球近十万年来所没有经历过的,换言之,在未来的几十年内,我们这个星球的气温将经历人类历史上前所未有的高点。

最新科学研究成果表明:近一百多年来,全球平均气温经历了冷—暖—冷—暖两次波动,总的看为上升趋势。进入20世纪80年代后,全球气温明显上升。1981—1990年全球平均气温比一百年前上升了0.48℃(见下图)。中国气候变暖趋势与全球的总趋势基本一致。据中国气象局的最新观测结果显示,中国近百年来(1908—2007年)地表平均气温升高了1.1℃,自1986年以来经历了21个暖冬,2007年是自1951年有系统气象观测以来最暖的一年。近三十年来,中国沿海海表温度上升了0.9℃,沿海海平面上升了90毫米。

全球气候不断增暖将改变各地的温度场,并影响大气的运行规律,各地蒸发量和降水量的时空分布亦随之改变;增温造成的海水、冰川融化和海水受热膨胀还会使海平面上升。这一切都必将给人类赖以生存的资源环境,包括水资源、能源、土地、森林、海洋、人类健康、物种资源、生态系统和农业生产等带来巨大冲击,并造成许多目前仍估计不到的重大影响。

一、全球气候变暖对农林业的影响分析

1.全球气候变暖将明显提高中国各地的有效积温,使无霜期延长,因而有利于复种指数的提高,并造成喜温作物的种植北界向高纬延伸以及作物产区的地理位移。这意味着我国目前的各种作物气候区划都可能发生变化:现在的一些作物适宜种植区将变得不再适宜,并出现一些新的适宜种植区。各地农事安排都将可能发生重大变动。种植区的北移固然有利于农用土地的扩大,但新开垦的土地因土壤贫瘠或水源不足,大多不易获得高产。而北移了的农作物更容易受到突降低温的威胁。

2.全球气候变暖,将使大量冰川逐渐融化,导致海平面上升。自19世纪以来,全球范围的山地冰川都几乎发生了大规模的后退。美国NOAA卫星观察到的雪盖资料表明:1980年以来,全球的雪盖面积减少了9%~13%。英国南极考察队的科学家们通过卫星观测发现,位于拉尔森冰架的一块像牛津郡那么大(约2 900平方公里)的冰山已从南极大冰原分离,并逐渐涌向大海。随着全球的进一步变暖,冰山融化,海平面上升,对中国来说,这可能会淹没东南沿海大片肥沃的低地,并造成地表水排泄受阻,地下水位提高,带来大片土地沼泽化。长江、珠江三角洲地区因海水倒灌,大片良田将盐渍化。

3.随着全球气候的不断增暖,气候变率势必也发生变化,极端气候频繁出现。研究表明,在气候要素平均值的变化与极端事件(灾害)发生概率的变化之间,往往存在着某种非线性关系:即使温度、降水平均值发生微小变化,也可能导致灾害性天气发生频率的显著增加。这意味着干旱、洪涝、台风、暴雨等发生频率将会增加。事实上,进入20世纪90年代以来,中国各种自然灾害就没有间断过:1991年的特大洪水曾肆虐江淮大地;1992—1993年的持续干旱更是横扫整个东部;1994年夏季华中出现了旷日持久的干旱和高温酷暑天气,而华南与东北则出现了严重的水患;1995年长江中下游地区和辽河平原又出现了建国以来罕见的暴雨洪水。据中国气象局公布的数字,仅1994年全国21个省市自治区的受灾面积就达0.5亿公顷,直接经济损失1 700亿元。新世纪以来,各种极端天气就没有间断过,特别是2010年更是反常,北方出现冬天暴雪奇冷天气,春季西南5省出现百年一遇的特大干旱,受灾耕地面积达到1.11亿亩,2 212万人出现饮水困难,持续干旱近五个月,仅云南一省就损失170亿元。

4.由于全球气候增温,寒冷季节将会缩短,温暖和炎热季节将会延长。这一定程度上会改善某些高纬地区温度条件较差的状况;但对那些夏季原本就很炎热的中、低纬地区来说,无疑是“火上加油”的灾难。高温将加快作物的生育进程,使生育期特别是灌浆期明显缩短,高温逼熟,极端高温对小麦、玉米、大豆等作物

[1] [2] [3]

均有显著的减产效应,还会造成水稻花粉败育。

.随着全球气候增暖,作物的各类病、虫、草害将会流行、激增和蔓延,出现范围也将由目前的中低纬地区向高纬延伸。增温将为各种害虫的生长、发育和大量繁殖提供更优越的条件,因而其越冬存活力将大大提高,雌虫产卵数将急剧增加,繁衍代数亦将明显增多。大气CO浓度的增加还会提高作物生物量的碳氮比,从而刺激昆虫的食欲。大气环流的改变更为风播病原的大范围扩散提供了外部条件。

.气候增暖后,土壤有机质的分解将会加快,积累量将会减少。长此下去,会造成地力下降。在某些降水量可能增多的地区,径流增大还会加剧坡地土壤可溶性养分与表土的流失。在某些降水量可能锐减的地区,植被将减少,表土易沙化,耕地更易于受到风蚀侵害,一旦遇到暴风袭击时,将产生“尘暴”效应;而遭遇暴雨冲洗时,又会造成严重的水蚀。

综上所述,全球气候变暖将对人类特别是农业生产产生极其深远的影响。这种影响或许有其有利的一面,但更多的、令人担忧的却是其不利的一面。因此,如何趋利避害,利用其有利的一面,克服其不利的一面,并寻求适应或延缓气候变化的对策,是摆在全人类面前的一道崭新的课题。

二、从农林角度应对气候变化的思考

人们应对气候变化的思路主要包括两个方面:一是如何控制和减缓温室气体的排放。二是如何增强农业生产适应气候变化的能力。前者是长期、艰巨的任务,后者是现实而紧迫的任务。

(一)发展低碳农业,减缓温室气体排放

林业以及农业生产中的种植业主要是通过植物吸收空气中的二氧化碳,生成有机物,并放出氧气的过程,在地球大气碳循环中发挥重要的碳汇功能。但在水稻田及沼泽地、动物粪便要释放一定的温室气体甲烷。农业生产过程中的农业机械、农业投入品(化肥、农药)要消耗大量的石化能量。农业秸秆等废弃物焚烧产生二氧化碳气体排放。因此,提倡低排放或零排放的低碳农业是我们的选择。

农业节能减排主要有这样几个途径:

.革新农业技术,大力发展节约型农业。发展节约型农业关键要在节地、节水、节肥、节药、节种、节工、节能等七个方面下工夫。“节地”,就是要高度重视土地资源的保护,大力发展高效设施农业,充分挖掘土、水、光、热资源的利用潜力,提高耕地的综合产出率。“节水”,农业特别是水稻,是高耗水产业,农业用水占全社会总用水量的%。要加快培育新的耐旱品种,深入研究和大力推广节水栽培技术,加强现有节水技术的集成推广,大力推广覆盖技术、水肥一体化技术、保护性耕作技术、滴灌施肥技术等节水技术,节约用水。“节肥”,就是要加快建立科学施肥的测土、配方、示范、推广体系,根据不同区域、不同作物、不同种植制度,制定测土配方施肥技术规程,改善养分投入结构,优化肥料运筹,改进施肥方法,发挥养分协同作用,提高肥料利用率,减少化肥总施用量。“节药”,遏制不合理的过量使用化学农药,大力开发抗病虫良种、进一步完善化学农药的使用技术,形成高效的综合防治配套技术。“节种”,就是提高种子质量,推广精量半精量播种、穴盘育苗等技术。 “节工”,即大力推广少免耕等轻简栽培和机械化生产技术,减少手工作业量,既可节约工本,又可促进农村劳动力的转移和农民增收。“节能”,大力开发农村太阳能,因地制宜开发利用风能、生物质能等清洁能源。

.切实解决以农作物秸秆为主的生物资源的综合利用,大力开发生物质能源。农作物秸秆作为一种农业生产的副产品,产量大、分布广,同时也是一项重要的生物资源——其含氮、磷、钾、碳的平均含量分别为.%、.%、%、%。据统计,中国年产农作物秸秆.亿吨,资源拥有量居世界首位。江苏省秸秆年产量 多万吨。但是,近年来焚烧秸秆在一些地区愈演愈烈,造成资源的巨大浪费。最近的统计结果显示,中国年产农作物秸秆中%用作农用燃料,%用作饲料,%~%作工副业生产原料,%~%直接还田,还有%约.亿吨剩余秸秆被白白焚烧了。笔者认为,中国正处于经济高速全面发展的时期,各种能源消耗量与日俱增,当务之急是要开展秸杆的回收利用。政府部门不仅要禁止农民焚烧秸秆,更要组织科研部门开展相关技术的攻关,解决秸秆综合利用的关键技术问题,挖掘秸秆利用的新途径。植物纤维可以通过汽化成为农用能源,也可以运用生化技术加工成肥料和饲料,植物纤维还可以作为包装材料、建筑材料、一次性餐具、家具等的替代资源。

全球气候变暖的影响范文2

关键词:全球气候变暖;生物多样性;影响

1 面临的现状

全球的气温正在渐渐上升,过去的300年里,全球温度上升超过了0.7℃。在20世纪,地球表面的平均温度至少上升0.6℃,政府间气候变化调查组(IPCC)的研究称,到2100 年全球气温比1990 年时至少要上升1.4~5.8℃。在未来的10000 年间,全球变暖现象将有什么样的发展?专家预测,下个世纪将是全球变暖发展最猖狂的1个世纪。伴随着其他一些因素,如加剧的空地运动,全球变暖将引起物种的大灭绝。这将比6,500 万年前恐龙大灭绝还恐怖。甚至许多非濒危物种都会在数量上急剧下降,从而造成物种间基因多样性的逐渐消失。

2 对生物多样性的影响

动植物对全球气候变化的反应包括:地理分布、生理、生活周期、迁徙习性和栖息地发生改变,生存能力降低等。例如,哥斯达黎加的鸟类濒临威胁,坦桑尼亚和印度尼西亚的蚊子向高海拔地区扩展,加利福尼亚的蝴蝶栖息地在丧失,不能耐受霜冻的植物上升到新的海拔高度,英国彩龟后代的性别比例受到7月平均温度升高的影响。气候变化最显著的指示物之一的珊瑚礁目前正发生大规模白化现象,尤以1998年的情况最为严重,估计导致世界上16%的珊瑚死亡。有关气候变化对生物多样性影响的最新研究表明,气候变化有可能在2050年前致使全球1/4物种灭绝;如果不减少CO2排放,到2050年CO2增加1倍时,气候变化将致使全球物种栖息地缩小,可能导致生物多样性热点地区的5.6万种植物和3700种脊椎动物灭绝。

全球变暖的一个明显后果是物候的变化:春天提早到来,植物开花、卵孵化、产卵都在提早。许多迁徙的鸟类正在改变它们的旅行日程。越来越多的研究显示,动植物为了适应气候的变化,正不断地改变着其活动范围和行为。许多情况下,这样的变迁正在引起生态混乱。例如,迁徙的鸟类到达欧洲的时间太晚,以致其产下的后代错过了毛虫生长旺季。

很多野生动植物病原体对温度、降雨量和湿度非常敏感,这些因素的共同作用可能会影响到生物多样性。气候变暖可以增加病原体生长率和存活率、疾病的传染性以及寄主的易受感染性。定向的气候变暖对疾病的最明显的影响与病原体传播的地理范围有关。多世代循环的病原体世代的数量和其他病原体的季节性增长,在气候变化的条件下可能通过2种机制增加――更长的生长季节和病原体生长速度加快。气候变化最有可能影响在陆地动物身上传染的病原体的自由生长的阶段、媒介阶段或带菌者阶段。科学家认为,最近几十年气候变暖导致了带菌者和疾病在纬度上的转移,这个假说得到了实验室研究和实地研究的支持。这些研究表明:(1)节肢动物带菌者和寄生虫在低于临界温度的时候死亡或无法生长;(2)随着温度的升高,带菌者的繁殖速度、数量增长和咬伤动物的次数也增加了;(3)随着温度的增加,寄生虫的生长速度加快,传染期加长。最近,厄尔尼诺――南方涛动的变化已经明显影响到了海洋和陆地的病原体,包括珊瑚虫病、牡蛎病原体、作物病原体、里夫特裂谷热和人类霍乱。气候变暖以几种不同的方式已经并且继续改变疾病的严重性或流行性。在温带,冬季将会更短、气温将会更温和,这就增加了疾病的传播率。在热带海洋,夏季更加炎热,可能使寄主在热度的压力下更加容易受到影响。危及两栖动物的壶菌、鱼类冷水病和昆虫真菌病原体等几种类型的疾病随着温度的升高,其流行的严重性将会降低。

3 对策

需要政府、行业、社团和个人共同努力来应对这个十分紧迫,而涉及范围又十分广泛的工作。例如由于物种分布范围和迁移路线随气候变化的改变,在现有条件下建立起来的自然保护区体系,可能因为受气候变化的影响而失去保护很多物种的效力,因此我们需要更大的保护区体系。在保护区的设计中,在诸如位置选择,保护区面积、区域划分,建立走廊等问题上,需要考虑到可能发生的气候因素所产生的变化和影响,对此做出相应的反映。

加强气候变暖对生物多样性的影响研究,加强气候变化对物种种群动态变化影响的研究,尤其是对热点地区关键物种的种群动态变化的影响。那些扩散能力弱、生活在破碎化栖息地中的物种,不能对气候变化做出及时反应,可能是最易于受到气候变化伤害的物种,最需要加强保护。因此,要加强气候变化对生物多样性具体影响的研究和监测,并积极寻求适应性应对办法,以减少气候变化带来的负面影响。

全球变暖正威胁着全球生物多样性的保持,而人类的可持续发展又以生物多样性为重要依托。因此,无论出于对生物多样性物质贡献的需要,还是环境贡献的需要,全人类必须共同行动起来保护生物多样性,保护我们生活的地球家园。

参与文献

全球气候变暖的影响范文3

应对全球变暖,必须基于科学认识。地球的气候系统受到大气圈、水圈、生物圈、岩石圈以及人类圈的交互影响,组成复杂、变化多样。尽管对气候系统的科学研究已取得一些重要结论,但由于以人类目前的认识水平,尚无法完全了解气候变化的全部内在规律,因此目前人类对气候变暖的认识确定性与不确定性并存。比如,预估的未来气候变化还存在不确定性,这主要是由于对气候系统的物理化学过程与反馈认识不足、可用于气候研究和模拟的气候系统资料不足,如对深海、永冻土等认识不足。

本文旨在归纳总结目前对全球变暖的认识哪些是确定的,哪些是不确定的,并提出相关建议。气候系统涵盖很多方面,本报告重点关注与人类活动造成的气候变暖相关的七个问题。

1七个问题的确定性与不确定性

1.1对全球变暖的认识:气候确实在变暖,但为什么又出现了停滞

(1)确定性认识。过去百年全球气候确实在变暖,特别是20世纪后期。近百年(1906-2005年)全球地表温度升高约0.74±0.18 ℃,近50年的变暖率几乎是近百年的2倍。陆地的变暖速度快于海洋,全球增温最大地区位于北半球高纬地区[1](见表1,表2)。

(2)不确定性。尽管过去百年气候一直在变暖,但是过去十多年变暖出现了“停滞”现象[2-3],自1998年以来全球平均温度没有明显上升。针对过去十多年全球温室气体排放量迅速增加,而大气增温“停滞”的现象,有研究认为,除温室效应外的其他因素可能发挥了较大作用,有三种观点:①自然因素(厄尔尼诺与南方涛动现象/ENSO、太阳辐射、火山活动)造成的冷却抵消了温室效应加剧造成的变暖[4-6],②深海吸收了多余的热量[7-13],③大西洋多年代振荡(AMO)的影响[14]。也有人认为后两个因素不是独立的,是北大西洋经向翻转环流(AMOC)造成了AMO,同时也影响了深海的热量吸收。气候变暖“停滞”

是否会继续?气候变暖会不会加速进行?这些疑问对当前全球变暖的认识提出了挑战(见表1,表2)。

1.2对大气中温室气体浓度上升的认识:工业革命以来大气温室气体浓度快速升高是确定的,但未来如何变化有不确定性

(1)确定性认识。工业革命以来大气中温室气体浓度大幅升高。在多种温室气体中,大气中二氧化碳(CO2)浓度已从工业革命前(1750年)的280 ppm(ppm表示“百万分之一”浓度),增加到了目前的400 ppm,增加了40%。

大气中甲烷(CH4)浓度在2005年约为1 774 ppb(ppb表示“十亿分之一”浓度),是工业化前浓度的两倍以上。大气中氧化亚氮(N2O)浓度在2005年为319 ppb,大约比工业化前高18%(见表1,表2)。

(2)不确定性。一方面,除CO2外的其他温室气体(如,地质时期埋藏的甲烷)可能会对大气温室气体浓度产生潜在的很大影响。过去人们只考虑燃烧煤、石油、天然气以及生产水泥、砍伐森林排放到大气中的CO2,而不太了解其他一些隐藏的气体也会严重影响大气中的温室气体浓度。新的研究表明,气候变暖可能使几百万年来埋藏在永冻土中的甲烷重新释放到大气中,从而增加了温室气体浓度变化的不确定性[15-23](见表1,表2)。

甲烷是一种温室效应很强的温室气体,它是沉积物中的有机物由于热力及微生物分解形成的,从最开始的岩石中流出来成层地,或在结构中积累,或者在高压低温下作为气体水合物存在于次表层像冰一样固体中[24]。北极永冻土及冰川形成一个“冰雪帽”,储藏了大量的从烃库渗透出来的甲烷,阻止其注入大气中。最新研究表明,北极地质甲烷库储藏了12亿t碳,远超过大气中甲烷含量(仅500万t)[16]。只要这些被埋藏在地下的甲烷有很小一部分逃逸出来,就会对气候产生巨大的影响。

另一方面,大气温室气体增加速率在近20年趋向缓慢,显著低于人类排放的增加速率。从20世纪90年代到21世纪头10年,人类活动排放碳呈明显的上升趋势,但是这期间存留在大气中碳的年增量却没有明显的增加[25]。可能的解释是这期间陆地生物和海洋可能吸收了更多的碳(碳汇增强)。但是观测数据却显示陆地及海洋的碳汇均在减弱。因此,目前已知的碳源与碳汇不能达到平衡。

1.3对于温室气体排放与气温上升的关系(气候敏感度)的认识:在现代大气CO2浓度加倍会导致全球平均增温约3.0 ℃,但是在更长时间尺度上气候敏感度是不确定的

气候敏感度是研究人类活动造成的气候变暖的度量标尺。一般采用平衡气候敏感度,指平衡条件下大气CO2浓度相对于工业化前加倍时全球平均温度的响应。一般认为大气中CO2浓度在工业化前为280 ppm,因此开始多取560 ppm为CO2浓度的加倍值,后来多采用600 ppm,约相当于对1900年CO2值的加倍。

(1)确定性认识。一般认为大气中CO2浓度加倍时,全球平均温度可能上升3.0±1.5 ℃。气候敏感度的值最初由Charney于1979年首先提出,认为3±1.5 ℃或者1.5-4.5 ℃[26]。之后大多数研究对于敏感度的估计范围都接近Charney的估计范围。IPCC 第一、二、三次评估报告均采用了这个估计值,第四次评估报告略微调整了下限范围,采用2.0-4.5 ℃[27](见表1,表2)。

(2)不确定性。短时间尺度(近百年)估算的气候敏感度并不适于估算更长时间尺度(万年)的气候变化。研究人员估计现代气候敏感度时,主要考虑了各种大气过程的相互作用,而未考虑气候系统中其他一些可能的变化,如大陆冰盖、深层海洋、植被、大气成分等的变化。目前对气候敏感度的估计是建立在假定这些成分无明显变化的基础上,但是在更长时间尺度上(万年以上),这种假定可能不成立。一些研究表明,长时间尺度的气候系统敏感度可能比现代的估计值高50%(气温骤升或骤降)[28-29]。比如,在冰期-间冰期旋回中气候敏感度可能达到6 ℃[30]。因此,在研究气候敏感度时可能需要增加考虑一些地球子系统的显著变化,如格陵兰冰盖融化(见表1,表2)。

1.4对于气候模式的认识:它能够很好地模拟出近百年的气候变暖趋势,但模式只能表征地球系统的部分特征

(1)确定性认识。气候模式是用数学方程式表现地球气候系统各个圈层相互作用和反馈的主要过程,对人们理解气候系统的演变机理起着重要作用。由于预测未来的气候需要考虑整个地球系统,所以气候模式也从大气-海洋耦合模式发展为地球系统模式,增加考虑了地球系统的更多因素,以及生物、地球化学过程。

目前的气候模式可以模拟出近百年的气候变化,特别是气候变暖趋势,且模拟的气候变暖量级接近实际观测值。模式中如果同时考虑人类活动影响(主要是温室效应增加)及自然因素,可以很好地模拟出20世纪以来的全球平均温度变化;而如果只考虑自然因素,则很难模拟出1980年以来的气候变暖趋势。这也证明了温室效应加剧对现代气候变暖起主要作用(见表1,表2)。

(2)不确定性。气候模式不能充分描述地球系统的变化,只能表征部分特征。目前气候模式的不确定性主要包括三个方面:①对自然因素的变化不能很好地模拟,如太阳活动和火山活动的影响;②对海洋的过程不能很好地模拟,如厄尔尼诺与南方涛动现象、北大西洋年代际振荡,均会产生全球尺度的气候振荡;③模式对于气候突变的模拟能力差,目前的模式不能很好地模拟出气候史上的气候突变事件,如大西洋经向翻转环流崩溃等。因此,气候模式尚不能充分描述地球系统的变化,只能表征部分特征(见表1,表2)。

1.5对于气候预估的认识:根据排放情景预估本世纪气候继续变暖,但还将变暖多少不确定

(1)确定性认识。根据温室气体排放情景预估,21世纪气候将继续变暖。通过假定不同的温室气体排放方案(高排放、中等排放、低排放等),利用气候模式预估的21世纪气温将继续升高。IPCC第四次评估报告给出了预估范围,认为全球平均温度到2100年相对于1980-1999年平均有可能上升1.1-6.4 ℃,1.1 ℃是最低排放情景的下限,6.4 ℃是最高排放情景的上限(见表1,表2)。

(2)不确定性。气候预估的不确定性来自三个方面:①未来排放方案不确定,各国将采取的排放标准和政策措施不确定;②对气候变化的自然因素认识不足(太阳活动、火山活动、海洋变化、地球轨道变化等),对气候系统的内部变率尚无法识别;③气候模式本身具有误差。这些不确定性导致预估的未来气候变暖幅度也不确定(见表1,表2)。

1.6对于2 ℃阈值的认识:它是人类控制升温的一个设想,但是升温幅度何时达

到2 ℃不确定

(1)确定性认识。2 ℃阈值是作为控制大气温度比工业革命前温度上升的上限。它最早由欧盟于2005年在其领导人会议上提出[31],随后IPCC和联合国气候变化框架公约(UNFCCC)也分别将其作为温度升高上限的依据,2009年哥本哈根气候变化会议正式采用2 ℃作为控制温度上升的最高上限,并以协议的形式通过[32]。

将2 ℃阈值作为人类应对气候变化的约束性目标,是由欧洲科学家考虑多种因素后最终确定的一个适中目标,并取得了国际共识。若阈值设置太高(如,3 ℃或4 ℃),则可能起不到约束作用;若阈值设置太低(如,1 ℃或1.5 ℃),则几乎无法实现(见表1,表2)。

(2)不确定性。2 ℃阈值是人们的一种设想,未来升温幅度何时超过2 ℃不确定。在各国政策影响下,人类活动或许推迟升温2 ℃的到来,也或许加速它的到来。如果全球实现大幅度温室气体减排,则有可能推迟升温幅度超过2 ℃的时间。此外,由于气候系统的复杂性,可能到某

一年升温幅度超过了2 ℃,但随后又降回2 ℃之下,若干

年后才会稳定地升高2 ℃。因此,未来升温超过2 ℃的时间不确定。研究认为[33],全球有可能最先达到2 ℃升温幅度的地区位于亚洲北部、北非到中东,亚洲其余大部分地区(包括中国)也将较早达到;南半球则由于大洋的热力惯性,可能是全球最晚达到2 ℃升温幅度的地区(见表1,表2)。

1.7对于地球系统临界点的认识:地球系统已有一些危险的信号,但何时达到临界点不确定

在一定条件下,当地球系统的一个临界成员的变化达

到某个临界值时,这个临界成员可能转变为另一种全新的状态(例如全球变暖可能使得北极冰完全消融),这个临界值称为临界点[34]。虽然这种变化可能只限于某个地区,但是其影响尺度往往可以达到千km以上的次大陆尺度,同时影响到半球或全球[35]。

(1)确定性认识。地球系统已存在的临界成员有[36-37]:北极海冰、格陵兰冰盖、同生冻土、海洋甲烷水合物、喜马拉雅冰川、西南极冰盖、大西洋经向翻转环流、北美西南部干旱、印度夏季风、西非季风、ENSO变化、北半球(北美)森林枯萎、冷水珊瑚礁、北半球(欧亚大陆)森林枯萎、亚马逊雨林枯萎、热带珊瑚礁、南大洋海洋生物碳泵。

这些都是地球系统中最脆弱的环节,在全球变暖的影响下最容易达到临界点。表1给出部分成员的基本状况,包括成员的主要变量、影响参数、临界值、时间尺度及主要影响。例如格陵兰冰盖的主要变量为冰量、影响参数为温度、临界值为3 ℃、时间尺度>300年的时间消融,使全球海平面(SL)高度上升2-7 m。

地球系统正在发生变化,目前已有很多危险的信号。比如,北极海冰是地球系统中最脆弱的子系统,根据有卫星观测记录(1979年)以来的资料,截至2007年夏季,北极海冰面积显著缩小[38],仅剩410万km2(9月),比1979-2000年9月平均水平(670万km2)减少了约

40%[39]。又如,海平面自1870年以来已经上升了20 cm,在1993年以来上升速度已达3.4 mm/a,比IPCC 评

估报告的估计(1.9 mm/a)要快80%[1]。关于导致海平面上升的各因素的贡献,海水热膨胀在1961-2003年的贡献约为40%,冰川、冰帽、冰盖约为60%[40](见表1,表2)。

(2)不确定性。临界值属于理论估计,具有不确定性,何时达到临界点也不确定。目前,地球系统的许多成员已发生一些危险的变化,例如冰盖消融、海平面高度上升是确定的。但是这些变化何时达到临界点或发生突变仍不确定。比如,夏季海冰何时完全消融?格陵兰冰盖何时完全融化?甲烷水合物何时释放出甲烷?亚马逊雨林是否被完全砍伐掉?此外,不同成员可能达到临界点的时间尺度有较大差异。例如,季风可能在1-10年之内发生变化,但是这种变化可能是可逆的;格陵兰冰盖的完全变化

可能在几百年之后,它的变化可能是不可逆的,即一旦消失,也许很难恢复;还有一些成员(如海洋甲烷水合物及海洋缺氧)其影响的时间尺度在千年以上(见表1,表2)。

2对气候变暖的总体认识

由于以人类目前的认识水平,尚无法完全了解气候变化的内在规律,因此目前对气候变暖认识的确定性与不确定性并存(见表2)。

对于气候系统的研究仍需不断深入,以增加更多确定的研究结论、减少不确定的研究范围,使人们更好地理解地球系统变化的规律,科学应对确定性的变化,科学规避不确定性的风险。

3政策建议

(1)加大对气候变化基础研究的支持力度,积累更多关于确定性与不确定性的科学认识,为深入揭示气候变化的规律奠定基础。

全球气候变暖的影响范文4

其实,二者并不矛盾。最新研究表明,频频光顾的寒冬可能是气候变暖的结果。

气候是不是变暖了?

如今,全球气候变暖的趋势逐渐得到广大公众的认可。特别是从20世纪末到21世纪初这段时间,各地冬季很少出现强寒潮天气,夏季的最高温度经常突破40℃。

那么,气候是不是变暖了?要判断全球气候是否变暖,不能只看一时一地,而要看全球平均气温的长期变化趋势,如100年中气温上升多少,30年中上升了多少。19世纪50年代开始有了较多的仪器观测温度记录,所以人们建立的温度序列,大多从19世纪中后期开始。世界上共有3个不同的全球平均温度序列。由于收集的资料及分析方法不同,3个序列的结果略有出入。根据这3 个序列,从20世纪的最初10年到21世纪的最初10年,全球平均温度分别上升了0.84℃、0.81℃及0.79℃。因此,可以粗略地讲,近百年来全球平均温度上升了0.8℃。由于大气中的二氧化碳等温室气体是在1750年之后才显著增加的,所以研究人员经常把1750年看作工业化前,因此人们有时也说,相对工业化之前,全球平均温度上升了0.8℃。但是,这只是一种近似的说法,因为19世纪50年代之前缺少系统的温度观测。不过,无论如何,全球气候变暖已经是确定无疑的了。早先国际上还有些人怀疑气候变暖的结论,后来由于愈来愈多的证据表明气候确实是变暖了,因此,现在怀疑气候变暖结论的人已经愈来愈少了。

气候为什么变暖了?

气候为什么会变暖呢?科学家告诉我们,这是人类活动造成的影响。自18世纪中期工业革命以来,人们燃烧了愈来愈多的煤、石油、天然气,再加上砍伐森林,使得大气中的二氧化碳浓度从1750年前后的280ppmv上升到2011年的390ppmv,即:在200多年中增加了40%左右。ppmv代表百万分之一大气的体积。从中不难看出,二氧化碳在大气中的绝对分量是不大的,只有大气总体积的万分之三。但是二氧化碳的变化对气候却有重要的影响。二氧化碳在大气中的作用好像温室的玻璃窗一样,不会影响到太阳辐射照射到地面,但能吸收地面放射的辐射,从而使地面保持较高的温度,人们把二氧化碳的这种作用称为温室效应。如果没有大气的保护,地球表面的温度就会降到-18℃,而不是现在的15℃左右。也就是说,大气的存在使得地球表面的温度升高了33℃。可见如果地球没有大气包围,我们是无法生存的。现在人类活动使大气中二氧化碳浓度进一步增加,这就使温室效应加剧,进而导致气候变暖。

但是,全球气候变暖是不是温室效应加剧的结果,或者说是不是人类活动造成的呢?这在过去20年中始终是一个被人们热烈讨论的问题,至少已经进行了5~6轮论战。从20世纪末开始有人提出气候没有变暖,并且认为如果变暖也不是人类活动造成的,到2009年的“气候门”事件,怀疑气候变暖论者弄虚作假,以及2010年提出气候变暖是否停滞了。这些争议时起时伏,但都以气候变暖论支持者的胜利告终。

现在诸多证据使气候变暖怀疑论的空间愈来愈小了。“气候门”也关闭了。还有一批非气候工作者,独立地收集了更多的温度观测资料,建立了世界上第四个全球平均温度序列,但结果却与原有的3个序列结果基本一致,证明气候确实是变暖了。尽管近10年内温度升高不大,但这10年仍然是有观测记录以来最暖的10年。而且国际范围气候模拟研究有了巨大的进步,建立了地球系统模式,这些模式的计算均表明,现代气候变暖有很大可能是人类活动造成的温室效应加剧的结果。

冬季是不是变冷了?

然而,与全球气候变暖相对应的是一个戏剧性的现象――近年来时常出现冷冬。2009年底在丹麦哥本哈根召开第15届气候变化框架公约缔约方大会时,就曾经出现这种尴尬的情形:3.4万人聚集起来讨论应对变暖问题,当地却出现了严寒。

今年的情况也差不了多少。人们正在研究2013年是否可能成为有史以来最暖的年份时,欧洲、特别是俄罗斯出现了自1938年以来未曾出现过的严寒天气。中国自入冬以来冷空气活动频繁,大风雪接踵而至。

这究竟是怎么一回事?欧洲、北美、东亚的强寒潮、暴风雪天气是不是同全球变暖的趋势相抵触?这是否意味着气候不再继续变暖了?

我们先看看冬季是不是变冷了?回答是肯定的。

2007~2008年冬季,北美西北部遭遇严寒天气,北部地区出现大雪;中亚到东亚地区降下大雪。2008年1月,我国南方出现大面积雨雪冰冻天气造成交通、电力、通讯设施严重受损。2008~2009年冬季,北美、欧洲、亚洲北部气候寒冷,俄罗斯严寒天气尤为突出。2009~2010年,美国出现25年来最冷的冬季、当年冬季也是英国31年来最冷的冬季、西伯利亚出现严寒天气,我国北方的大雪造成严重灾害。2010~2011年及2011~2012年冬季,欧洲、北美、亚洲寒冷依旧。

可以说过去5个冬季,北半球的欧洲、北美、东亚都遭遇到不同程度的严寒。根据全球地面气温的观测记录,21世纪第一个10年(2001~2010年)的冬季,与20世纪的最后10年(1991~2000年)相比,美国温度下降1~2℃,欧洲下降2~3℃,西伯利亚下降3~4℃,我国东北(包括内蒙古东部)及新疆也下降1℃左右。可见近年来冬季的变冷不是个别年份的现象,也不是某一地区的局地现象。至少从2004年起这个过程已经开始了,不过在2007年之后这种趋势更为突出罢了。

冬季为何变冷了?

根据全球变暖理论,伴随温室效应加剧,高纬度地区冬季的温度应该明显上升。现在处于北半球中、高纬度的3个地区,冬季一致变冷,这是不是说明温室效应加剧的理论失效了?

科学家已经注意到了这个问题。2012年3月,中国科学家刘骥平、柯里、王会军等在美国科学院院刊上,提出了“暖大洋冷大陆”理论。这个理论的要点是:气候变暖导致北极海冰融化,使极区变暖,气压上升,大气西风环流产生波动,在北大西洋形成一个强的高压脊,北美及欧洲处于这个高压脊的两侧,形成很深的槽,冷空气顺槽南下,所以冬季出现严寒天气。由于冬季大气环流特征是在北半球有3个槽,欧洲槽的加深促使东亚的槽也加深,因此东亚的气候也寒冷。当然,这个理论还处于研究初期。另外,虽然已经有了一些数值模拟研究,但尚不成熟。不过,这些科学家的论文提出来一个对当前气候研究十分有针对性的理论问题:地球系统是十分复杂的,这个系统包括大气圈、水圈、冰冻圈、岩石圈、生物圈五大圈层,各圈层之间有各种各样的相互作用。这个例子十分生动地告诉我们,不能像过去一样孤立地、简单地看待人类活动的影响,包括气候变化,而要充分考虑各圈层之间的相互作用。由于温室效应加剧,气候变暖了。气候变暖促使北极海冰融化,改变了大气环流,使得冷空气侵入两个大陆。这样就产生了戏剧性的效果,全球气候变暖反而造成了北半球大陆的寒冬。

海冰变化是这一理论的基础。2007年是北极海冰第一个破纪录的低点。夏末秋初(9月)正是北极海冰面积最小的时候,2007年9月,北极海冰面积降到413万平方千米,比多年平均值减少40%。2007~2009年,北极海冰面积略有回升,但仍明显低于2007年以前,2012年9月,北极海冰面积又降到一个新低,为341万平方千米,成为1979年有较为准确的卫星观测以来的最低值。所以,无论如何,海冰的变化是“暖大洋冷大陆”理论的强有力的基础。

这样的寒冬异常吗?

有人可能接着会问,这样的寒冬能称为异常吗?上面谈到,西伯利亚的平均温度可能低了3~4℃,是指近10年与前10年比较。个别年份冬季的差别会更大。一般这个差别用对30年平均的偏差来表示。例如,对1971~2000年平均温度求偏差。每一年冬季各地温度的偏差是不一样的。正偏差多时就是暖冬,负偏差多时就是冷冬。通常纬度越高偏差的绝对值就越大。例如中国的寒冬,东北北部及内蒙古东部,最大偏差可能达到-3℃到-5℃,但是华南、台湾就可能只有-1℃到-2℃,或不到-1℃。像欧洲、西伯利亚,温度偏差的绝对值可能比中国北部还要大得多。一般认为异常是很少出现的意思,在气候学中有严格的定义,有各种统计学的定义方法。一种比较粗略,但比较容易理解的定义是:30年一遇,就是说30年才出现一次的情况就可以认为是异常。如俄罗斯今年出现自1938年以来最强的寒冬天气,显然这就可以称得上异常了。中国上一次出现全国性的寒冬是在1976~1977年,距今已有30多年了。如果2012~2013年的冬季能达到或者接近那种寒冷程度,也可以认为是异常了。不过,我们现在谈的寒冬,是在经历了一段时间的暖冬之后、在气候变暖的背景上来看的,所以寒冬显得格外引人注意。但从强度上讲,现在的寒冬较之20世纪70年代和20世纪50年代已经逊色不少,更远不如17世纪和19世纪的寒冬那么凛冽。

冬季严寒会持续吗?

了解了寒冬成因及其与气候变暖的关系之后,我们来看看2012~2013年整个冬季是否都会像现在这样寒冷。

这是一个极有挑战性的问题。我国国家气候中心的预测可以提供这方面的信息。本文不可能具体讨论今冬的预测,但是可以提供一个基本思路。例如,冬季已经过了一半,接下来的一半还会继续寒冷吗?根据历史资料,一个冬季有时不一定是一冷到底的,有可能先冷后暖、或先暖后冷,所以气候学上经常分前冬后冬,这要根据当时的气候条件进行预测。对下一冬季,或未来几个冬季的预测也是这样。虽然看来海冰的下降趋势依然会继续,所以,可以肯定的是,未来还会出现寒冬,但是也许不会每一个冬季都是寒冬。不过究竟哪一个冬季冷,要看当年气候模式的预测,也要考虑其他物理因子的影响。例如,热带大洋的海温有什么异常?以及是否发生了强烈的火山喷发?还有不少类似的事件也会影响气候变化的进程。

全球气候变暖的影响范文5

气候变暖作为全球变化的主要表现之一,已经成为一个不争的事实[1-3]。自工业化革命以来,人类活动包括化石燃料的燃烧和土地利用/覆盖度的变化,已使地球大气层中CO2的浓度上升了30%,造成地球表面的平均温度在20世纪升高了(0.60±0.2)℃,预计到21世纪末地球的平均温度还将继续上升1.4~5.8℃[4,5]。IPCC(Intergovernmental Panel on Climate Change)第3次评估报告对北半球的树木年轮和沉积核等估算数据以及仪器观测的数据所得到的地球表面温度变化进行了总结,并结合各种气候模型模拟了过去的气温变化,以IS92a(温室气体排放方案)情景对未来100年全球平均温度进行了预测。尽管各种方法所估算的结果在量上存在一定的差别[6],但温度上升的趋势是一致的。由于所有的物理、化学和生物学过程都对温度反应敏感,上述地质历史上前所未有的气候变化将对陆地植物和动物的生长和分布以及生态系统的结构和功能产生深远的影响,并通过生态系统和全球碳循环反馈于全球气候变化[7]。 陆地碳循环作为全球碳循环中最重要的环节之一,涉及问题最多,也最复杂,陆地生态系统作为最可能的未知碳汇所在地已成为目前研究的热点区域[8],它同时也是目前研究中存在最不确定性的生态系统之一[9-12]。草地作为陆地植被中重要的植被类型之一,在区域气候变化及全球碳循环中扮演着重要的角色[13,14],日益受到碳循环研究者的重视,对其相关的研究也得到了较快的发展。草地生态系统覆盖地球表面土地面积的1/4~1/3[15],其面积约为44.5×108 hm2,碳贮量达761Pg,其中植被占10.6%,土壤占89.4%[16],研究草地生态系统碳循环有助于增进对全球碳循环的理解,更加准确评估碳循环及其由此引起的气候变化具有十分重要的作用。 1 对草地生态系统净初级生产力(NPP)的影响 草地生态系统净初级生产力是指单位时间、单位面积上草地植被光合产物与自养呼吸的差值,它是草地生态系统最主要的碳输入方式。气候变暖不仅可以直接影响光合作用来改变生态系统的NPP,还可以通过改变土壤氮素矿化速率,土壤水分含量,间接影响生态系统的NPP[17,18],是反映群落固碳能力的重要指标。 研究发现,气候变暖可以增加NPP。Morgan等[19]指出,在未来温度升高2.6℃的条件下,美国矮草草原的生产力将增加。周华坤等[20]采用国际冻土计划(ITEX)模拟增温效应的结果表明,在温度增加1℃以上的情况下,矮嵩草(Kobresia humilis)草甸的地上生物量增加3.53%,其中禾草类增加12.30%,莎草类增加1.18%;也有研究表明,气候变暖使得西欧寒温草地生态系统的多年生禾本科非克隆类草叶面积指数增加,但增加的主要原因是由于增加了单株的分蘖数而不是增加了单位分蘖的叶面积[21],从而增加草地生态系统NPP。 但也有研究发现,气候变暖可以降低NPP,尽管光合作用在增温条件下可以固定更多的CO2,但是气候变暖可导致自养呼吸的增加,最终使得NPP降低[22]。Smith等[23]通过研究指出,随着温度上升2~3℃以及与之相伴的降水量的下降,在亚洲干旱和半干旱区域的草地生物量将下降40%~90%。模拟全球变暖带来的温度升高和降水变化对植被生产力和土壤水分的影响表明,温度升高造成环境适应差的野古草(Arundine hirta)生产力显著下降,致使整个群落的生产力降低;将相同的自然植被用渗漏测定计移入海拔50m的生产力显著低于移入高海拔460m实验点,而对铁杆蒿(Artemisia sacrorum)和黄背草(Themeda japonica)的影响较小[24]。肖向明等[25]运用CENTURY模型模拟的结果表明,除气候变暖水分限制条件促进高CO2水平情况外,未来气候变化导致羊草(Leymus chinensis)草原和大针茅(Stipagrandis)草原的NPP显著下降[26,27]。气候变化导致草原NPP下降的原因,据张国胜等[28]对高寒草甸牧草生长的研究认为,尽管气温有所升高,但牧草返青期气温回升速度在逐年减缓,牧草枯黄期气温降低速度逐年增大;虽然降水量总体有所增加,但是主要分布在冬季,对植被生长发育不利,主要优势牧草嵩草(Kobresia)生长高度下降,高质量牧草减少,生物量减少,进而影响了草地NPP。 因此,草地生态系统的NPP对气候变化的响应不同,是受气候变暖条件下水分、CO2浓度、温度等关键因子及各关键因子交互作用的影响,同时不同草地类型的NPP的响应也是不同的。但总体来看,低纬度地区生态系统NPP一般表现为降低,而中高纬度地区通常表现为升高或不变。 2 对土壤呼吸的影响 土壤呼吸是指未经扰动的土壤中产生CO2的所有代谢过程,包括土壤微生物呼吸、土壤无脊椎动物呼吸和植物根系呼吸3个生物学过程以及土壤中含碳物质的化学氧化过程[29,30]。其中,普遍认为森林和草原土壤无脊椎动物呼吸的作用不是十分明显。因此,在森林以及草地生态系统中,土壤微生物呼吸以及植物根系呼吸成为土壤呼吸研究中的重要组成部分,其中根系呼吸的贡献率随生态系统的不同差异很大[31](表1),尤其是一直作为研究难点的植物根系呼吸与土壤微生物呼吸的区分问题近年来逐渐受到关注[32]。 土壤呼吸之所以与气候变化有关系,是因为土壤呼吸所释放的CO2是温室气体之一,大气中CO2的不断升高加剧了温室效应,可能导致全球变暖。全球变暖会大大刺激呼吸作用,导致更多的CO2释放到大气捕捉热量。因此,在气候系统与全球碳循环之间形成了一个正反馈环,使二者被加强[33]。气候变化几乎影响到植物土壤呼吸过程的各个方面,在生物化学和生理方面,呼吸系统包括许多酶以驱动糖酵解、三羧酸循环和电子传递链[34-37]。在高温范围内,腺苷酸(包括腺苷-磷酸,AMP;腺苷二磷酸,ADP;腺苷三磷酸,ATP)和底物供应对调控呼吸作用通量具有重要作用[38]。 #p#分页标题#e# 气候变化对根呼吸的影响主要是温度高低决定的。当温度较低,呼吸速率主要受生化反应限制时,根呼吸也是随着温度升高呈指数增加[39,40]。温度较高时,那些主要依赖扩散运输代谢和代谢产物成限制因子,超过35℃,原生质体开始降解。低温时如果氧气含量较低,扩散运输物理过程限制呼吸[41]。温度变化也影响根的生长,间接地影响根呼吸,一年生草本[42]和多年生草本[43-46]在温度较高时生长较快。控制试验[47]也证明了根的伸长生长具有一个最适温度,超过最适温度后开始下降,而且最适温度在不同类群中差异很大,部分原因是由于植物适应了不同温度。由于温度变化导致根的生长间接地影响根呼吸与植物发育阶段。例如:来自坦桑尼亚的塞伦盖蒂(Serengeti)草原11个研究地点的平均值表明,各月的根生物量在6月最高,2月最低;大豆(Glycine max)和高粱(Sorghum bicolor)根呼吸释放CO2从营养阶段到开花阶段显著增加,然后下降[48]。苋属植物(Amaran-thus)的根呼吸则在营养生殖阶段最高,之后随着发育阶段的延长而降低,枝条和根活动的物候变化对土壤呼吸的季节性有重要作用[49]。另外,在沿海拔梯度和土壤加温的研究中发现草地自然群落中根呼吸主要与光合有效辐射(PAR)相关,而不是与土壤温度相关[50,51]。因此,气候变暖在短时间内尽管可以刺激根系自养呼吸,从而使土壤呼吸产生大量的CO2,但增温并不能长期使土壤呼吸持续增加,即随增温时间的延长,土壤呼吸(根呼吸)对温度变化表现出一定的适应(acclimation)和驯化(adaptation)现象,从而降低和缓解草地生态系统对全球变暖的正反馈效应[52,53]。 根系自养呼吸和微生物异氧呼吸是草地土壤释放CO2的主体。土壤温度、湿度、微生态环境的变化都会影响到土壤微生物量、微生物活性和微生物群落结构。气候变暖导致土壤温度升高,进一步刺激土壤微生物,从而通过控制土壤有机质分解速率和养分有效性最终影响陆地生态系统的碳平衡[54]。因此,研究草地土壤微生物对气候变暖的响应对预测草地生态系统碳贮量有至关重要的作用[55]。目前,有关气候变暖对土壤微生物量的影响还没有统一的结论,主要存在以下不同观点:其一是减少,例如Rinnan等[56]通过对亚北极地区苔原生态系统增温进行研究,发现增温15年后,增温点的微生物量明显低于对照点,即温度升高降低了土壤微生物量;其二是不变,例如张乃莉等[57]认为变温对土壤微生物量没有影响,更多的研究也得出了类似的结论[58,59];关于温度升高增加土壤微生物量的报道很少[60,61]。由于手段和技术的原因,这部分研究还存在很大的不确定性,很难完全解释气候变暖对土壤微生物活动产生的影响,需要对此进行更深入和全面的研究。 土壤呼吸随温度的变化习惯上用Q10表示,在生理生态学中指5~20℃,温度每增加10℃呼吸增加的倍数。定义如下:Q10=RT0+10/RT0(其中,RT0和RT0+10分别是参比温度T0和温度T0+10℃时的呼吸速率)。当温度和土壤呼吸之间的关系用一个指数函数拟合时,Q10就可以通过方程Q10=e10b中的系数b估计出来。Q10的微小变化可能引起对土壤呼吸评价的很大变化,从而导致对未来土壤碳损失量预测的重大误差。因此,充分理解温度及其他因素对土壤呼吸敏感性的影响是预测未来气候变化下土壤碳平衡的关键。但是正如前面所述,土壤呼吸各分室对温度的敏感性不同,且土壤呼吸温度敏感性存在着相当大的时空变化,这可能与温度以外的土壤理化性质等因素的空间分异有关。一般对于不同生态系统和不同尺度土壤呼吸的Q10不尽相同,根据将近15年所整理的数据,全球Q10的中间值为2.4,变化范围是1.3~3.3[62],高纬度地区大于低纬度地区,温带草原Q10为2.0~3.0。 3 对凋落物的影响 草地生态系统凋落物是指草地生态系统内,由植物、动物和土壤微生物组分的残体构成,也称残落物,其中微生物是生态系统的重要组成部分,在草原生态系统的物质循环和能量转化中占有重要地位[63]。残落物是为分解者(微生物)提供物质和能量来源的有机物质的总称,包括地上部分的枯枝落叶以及地下根系的凋落物,通常以月或年来表示单位时间内植被的凋落物量,即单位面积、单位时间地面上形成的凋落物量。凋落物包括枯立木、倒朽木、枯草、地表凋落物和地下枯死生物量等,是草地生态系统碳库的重要组成部分,在维系生态系统结构和功能中具有不可替代的作用,是维系植物体地上碳库与土壤碳库形成循环的主要通道之一。凋落物分解过程研究因其在生物地球化学循环中的重要地位而具有悠久的历史[64],20世纪80年代后期,国际学术界即开始关注气候变暖、大气CO2浓度倍增对凋落物分解速率的可能影响[65]。 气候变暖对凋落物分解的影响,一方面体现在影响凋落物的生产量和质量[66]。一般认为,气候变化对于凋落物在碳素和营养循环中起着重要作用[67]。气候变暖通过延长植物生长季和改变植物物候条件间接影响着凋落物的量。而纬度和海拔差异对凋落物的影响也十分明显,一般随纬度增高凋落物的产量下降。Heaney和Proctor[68]在哥斯达黎加2 500m的垂直海拔带上,发现海拔升高,凋落物分解速率下降2.7倍。主要原因可能是温度升高导致草地植被地上生物量的减少[69,70],从而影响了凋落物的量;凋落物的质量是影响凋落物分解的内在因素,通常是以凋落物含养分量的高低来衡量,并以各种含碳化合物与养分含量的比值来表示,也可以养分含量直接表示。在气候变暖对凋落物质量的影响方面,单独的气温上升会增加凋落物的产量,但对凋落物的质量是否会有明显的影响还未见报道[71]。如果考虑导致温室效应的大气CO2浓度的上升,则会有凋落物C/N增加的效应,C/N的增加使分解速率下降[67]。不同植物产生的凋落物数量和化学成分也有很大差异。凋落物中木质素/氮能够比氮素浓度更好地预测分解速率[72],同时凋落物本身的一些生物学特性对凋落物分解也有很大的影响,如凋落物的分解与其初始碳、氮和磷浓度有紧密的关系,孙晓燕等[73]研究结果进一步表明,参与分解的凋落物种类即功能群多样性的增加可能使得混合效应产生的可能性增加,但凋落物的生物学特性是产生混合效应的主要决定因素。#p#分页标题#e# 另一方面气候变暖也影响凋落物的分解速率。例如王其兵等[74]评价气候变化对草甸草原、羊草草原和大针茅草原混合凋落物分解过程的可能影响时发现:较之当前气候,在气温升高2.7℃,降水基本保持不变的气候变化情景下,这3种草原类型凋落物的分解速率分别提高了15.38%,35.83%和6.68%;而在温度升高2.2℃或更高,降水减少20%或更高的气候变化情景下,各种凋落物的分解速率将降低。Noah和Craine[75]利用Q10研究了温度升高对凋落物分解的影响,表明不同枯落物分解对温度的敏感性不同。这对于探讨当前全球气候变化条件下系统内物质循环具有科学的指导作用。 总之,气候变暖主要影响凋落物产生的量和质量以及分解速率,但是气候变暖不仅仅是温度的升高,伴随着还有一些其他环境因子的变化,例如大气CO2浓度的上升、土地利用和覆盖物的变化以及土壤水分和养分供应变化对凋落物的影响,草地生态系统物种组成以及物种之间的相互作用等,是由于温度升高这个单一还是多因素相互作用共同导致的结果对凋落物产生的量和质量以及分解速率造成影响,还需要进一步的研究和试验验证。 4 对土壤碳库的影响 在草地生态系统中,土壤的碳贮量约占草地总碳贮量的89.4%[76]。因此,土壤碳库的微小变动都会对大气CO2浓度产生重要影响,而且土壤有机碳含量关系着在全球气候变化和生物多样性发育上的服务功能[77,78]。因此,草地土壤碳库碳贮量及其变化和调控机制的研究是草地碳循环研究的核心[79]。土壤碳库包括土壤中的有机碳和无机碳。由于无机碳以碳酸盐的形式存在,活性很低,对环境因子的反应不敏感,所以研究主要侧重于土壤有机碳库。土壤是大气CO2的主要来源之一,每年释放68~75Pg碳到大气中[76],土壤碳储量约是大气碳库的2倍,是植被碳库的3倍[80]。土壤CO2排放量与温度之间的正反馈关系受到了广泛关注,气候变暖加剧了土壤碳的排放。由于影响这种反馈关系的因素非常复杂,因此,在土壤碳循环研究中还存在很大的争议。目前主要有2种观点:其一,认为土壤温度上升将极大提高土壤碳的释放,气候变暖后土壤是一个相当大的碳源[22,81,82];而另一种观点认为,土壤有机碳的分解对气候变暖具有适应性,随着温度持续上升,土壤呼吸对温度的敏感性下降[82],即土壤碳循环对气候变暖的反馈是有限的。在草地生态系统中,土壤有机碳的来源主要是植物残根,凋落物层的分解也向土壤输入一部分有机碳。草原中土壤碳主要以有机质的形式存在,而且主要集中于0~20cm的表层土壤中[83]。一般来说,气候因子主要是通过影响植被以及凋落物的分解速率改变进入土壤的有机质数量。王淑平等[84]对中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子关系的研究发现,土壤有机碳含量和降水量之间呈显著正相关,温度对土壤有机碳的影响很复杂,土壤有机碳含量和年均温相对海拔的偏相关系数呈显著负相关,即适宜的温度有利于土壤有机碳的积累,否则对有机碳的积累具有负效应。此外,不同生态系统土壤有机碳含量对气候变化反应不一,例如:陶贞等[85]对高寒草甸土壤有机碳研究发现,随着全球气候变暖,大气CO2的施肥效应将促使高寒草甸生态系统地上部分固碳量增加,有利于土壤上部根和有机质的积累。但是研究发现[86],北极苔原生态系统因施肥效应导致土壤根部有机质分解大于地上植物产量,造成苔原生态系统土壤有机碳损失。 气候因子对草地生态系统土壤碳库的影响不是单方面的,它通过碳输入和输出影响着草地土壤碳库的大小,是一个复杂的过程。主要是气候因子决定了植被种类的分布、光合产物生成量和土壤微生物的活动强度,因此对土壤有机碳的固定和矿化分解过程有极大的影响。从整体上讲,气候变暖对草地生态系统土壤碳库的影响有2个方面[6],一方面温度升高改变了植物生长速度,提高了草地植被的净第一性生产力和固碳能力,植被向土壤输入更多的碳,从而有利于土壤碳库的增加;另一方面,温度升高,土壤微生物及酶的活性受到影响,改变了土壤原有的理化性质,加速土壤矿化速率,导致土壤有机碳分解,土壤呼吸加剧等,使土壤碳库储量减少。 5 问题与展望 全球变暖对草地生态系统的影响是一个复杂和长期的生态过程。目前,尽管关于气候变暖对草地生态系统土壤碳循环的影响及反馈机制取得了大量研究成果,但是气温变暖不仅仅是温度的升高,伴随着例如大气CO2浓度的上升、土地利用和覆盖物的变化以及土壤水分和养分供应变化等其他环境因子的变化对草地生态系统碳输出和输入的影响,而且就草地生态系统而言,其分布地域比较广,草地类型种类多,该领域仍然还有一些问题和不足,在未来尚需加强研究。 1)加强全球背景下草地生态系统土壤冬季呼吸研究。目前草地土壤呼吸的研究多集中在生长季,有关土壤呼吸冬季特征的报道很少。对年土壤呼吸量的估算大多基于冬季土壤呼吸为0的假设[87]。另外,研究发现冬季积雪能够防止土壤冻结,维持微生物活力,显著影响生态系统的碳平衡[88],而气温变暖,尤其是冬季增温和积雪覆盖的减少对于土壤呼吸的影响,对深刻认识生态系统碳循环和碳平衡,以及预测全球变暖对陆地生态系统碳汇/碳源有重要意义。未来研究应加强草地生态系统冬季土壤呼吸的测定以及模拟增温条件下土壤呼吸的变化研究。 2)加强气候变暖与其他气候因子协同作用的研究。当前研究大多集中在单因子或少数因子之间的相互作用对草地生态系统碳循环的影响,因此,在研究过程中通过建立模型来分析气候变暖与其他气候因子的联合效应将是以后研究的重点和难点。 3)加强气候变暖对草地根际微生态系统影响的研究。根呼吸与微生物呼吸的区分是土壤呼吸研究的一个重点和难点。气候变暖通过根系生产力、根呼吸、根系分泌物及死亡的根组织,影响着各组分碳通量变化及其对草地生态系统地下碳分配的贡献,并且对气候变暖有明显敏感性。然而,由于根际微生态系统的复杂性和缺乏有效的手段和方法,诸如根的分泌物以及死亡的根组织碳的分解本应属于微生物的异养呼吸,但目前的研究均被归类为根呼吸的组成部分[89],成为草地生态系统对全球变化响应的不确定因素,因此还需进一步研究。#p#分页标题#e# 4)加强气候变暖下以草地农业生态系统耦合理论为核心的现代畜牧业的研究。自工业化革命以来,人类活动已使地球大气层中CO2的浓度上升,造成地球表面的平均温度升高,但是人类经济发展是不可逆的,人类活动必然进一步影响草地生态系统生态安全和健康。既有利于生态系统碳的固定,又有利于区域经济发展的放牧强度或者利用方式等问题,以及气候变暖下草地畜牧业生态系统内部各生产层之间以及不同类型的系统之间在时间及空间上全方位的耦合,将是未来科学家关注的焦点。

全球气候变暖的影响范文6

1981―1990年全球平均气温比100年前上升了O.48摄氏度。导致全球变暖的主要原因是人类是在近一个世纪以来大量使用矿物原料(如煤、石油等),排放大量的C02等多种温室气体。由于这些温室气体对来自太阳辐射的可见光具有高度的透视性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。尽管在全球范围内努力寻求控制措施,但短期内很难控制其增长势头。CO2浓度与气温的增高对农作物产量和品质都会产生深刻影响。

一、温度升高对作物生产的影响

专家认为,温度升高对作物生产来说是一把双刃剑。温度升高可延长全年生长期,对无限生长习性或多年生作物以及热量条件不足的地区有利,而对生育期短的栽培作物来说又是不利的,因为温度高使作物的发育速度加快,生育期缩短,单产下降。温度升高,高温热害、伏旱将更加严重,目前对我国亚热带农业生产的影响已十分突出,暖温带也有程度不同的类似问题。高温胁迫的热害已经限制了作物生产,影响玉米、大豆、高梁、谷子等的种植和产量,水稻、棉花的生育也受到强烈抑制。温度升高对不同的生长季节有不同的效果,其影响程度视作物种类、地区和种植水平而异。在温室效应影响下高温热害加剧,将是影响我国农业生产的严重问题。另外,气温升高冬种面积将扩大,北方夏收和南方小春作物将增产。冬季气温升高对我国的农业意义更突出,对秋播和临冬播种的作物生育有利,小麦、油菜等作物越冬率、分蘖或分枝增加,作物生长发育较充分,有利于产量形成。我国冬种面积约占可以冬种的耕地面积的40%,还有相当大的潜力。因此冬种面积将扩大,夏收和小春作物产量将会增长,这也是利用有利的冬季弥补不利的夏季的有效措施。

二、降水量的变化对作物生产的影响

关于全球变暖对全球备个地区年降水量的影响,应该这样说,全球变暖打破了以往的降水的区域分布平衡状况,使得有的地区年降水量较常年增加了,而有的地区年降水量较常年减少了,造成降水异常。粮食作物对水分的增多与减少反应不同。玉米表现为水分增加产量增加。小麦对降水量的反应表现出缺水和过多都影响产量。水稻的栽培是“以水定稻”,北方水分减少使水稻减产,降水量变化对南方晚稻生产影响极大。晚稻生育期增加水分,可以改善伏旱期的水分供应,减少产量的损失;降水量不增加或减少,由于温度升高,生育期缩短,晚稻将严重减产。甘薯、高梁、谷子在气候变暖、变干或变湿的过程中由于抗逆性较强,将起调节作用,可减少粮食产量的波动。温度、水分变化对作物生产的影响还决定于水、热匹配状况,如气候变暖与变湿相匹配且同季,农作物将增产;如气候变暖、变千,水分不仅限制变暖的效果,而且会加剧不利影响,作物将减产;如气候变暖而水分无变化,在冷凉湿润地区作物将增产,在多熟种植的温暖地区对有的作物生长季有利,有的作物生长季不利。

三、酸雨对农作物的影响

酸雨是指由空气污染而造成的酸性降水,通常认为大气降水与二氧化碳气体平衡时的酸度ph5.6为降水天然酸度,当降水的ph值低于5.6时,降水即称为酸雨。

降水为什么会变酸呢?这主要是空中云层吸收大气污染物并在雨滴内不断反应形成酸性物质的结果。酸雨中含有多种无机酸和有机酸,绝大部分是硫酸和硝酸,以硫酸为主。硫酸和硝酸是由人为排放的二氧化硫和氮氧化物转化而成的。酸雨会伤害植物的枝叶,从而影响其发育生长,直接影响农作物产量。

我国目前酸雨污染面积占国土面积30%左右,并在一些地区以惊人的速度发展。造成我国酸雨形成的主要来源是以燃煤为主能源消耗过程中排放的大量二氧化硫污染物。因此,要治理酸雨污染,首先要控制二氧化硫排放总量。

四、气候变化对病虫害的影响

自工业革命以来,大气中C02、CH4、和N02等温室气体的含量分别增加了约30%、14%~Ii5%,其结果是对气候产生正的辐射强迫,导致气候变暖。据估计,到2025年,大气中的C02含量将增加1倍,在未来的100年中,全球平均气温可能升高1.0-3.5:C。据统计,我国常年病虫害发生面积2100~2133亿hm

,是耕地面2积的2倍多,每年因病虫害造成的粮食减产幅度占同期粮食生产的 9%,气候变晖后,因病虫害造成的粮食减产幅度将进一步增加,应引起植保部门的足够重视。研究发现气候变暖对农业病虫害的潜在影响有以下几点:

(1)地理范围分布扩大,气候变暖使得分布在地区边缘的昆虫有可能向区外发展。有研究表明,目前受低温限制的种,将来有可能在高纬度地区越冬,因而增加了有害生物向两极扩散的机会。

(2)由于温度升高,害虫发育的起点时间有可能提前,一年中害虫繁殖代数也因此而增加,在新的有利环境条件下,某些害虫的虫口将呈指数增加,造成农田多次受害的几率增高。气候变暖后,在18~27°N(粘虫冬季繁殖气候带)、27~33°N(粘虫越冬气候带)、33~36°N(粘虫春季迁入气候带)及在36―39°N的冀东北、山东半岛、北京等地,粘虫发生世代均将在原来的基础上增殖1~2代。(.3)气候变暖,尤其是冬季温度增高,有利于条锈菌越冬,使菌源基数增大,春季气候条件适宜,将会促使小麦条锈病的发生、流行加重。在气候条件适宜的年份,小麦条锈病将有“南下”发展的趋势。若双季稻种植区的东部向北扩展到35~36°N之间的地区时,将使早、晚稻孕穗末期至抽穗期容易处于温度较低、雨水较多的时期,遇低温的几率加大。而低温和寒露风对穗颈稻瘟病的流行十分有利,因此,双季稻种植区北移后,易造成稻瘟病北上,有利于稻瘟病的发生和加重。

编程小号
上一篇 2024-06-26 23:50
下一篇 2024-06-26 23:36

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至tiexin666##126.com举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://tiexin66.com/syfw/513809.html